
	 	 	1	

DOE	Centers	of	Excellence		
Performance	Portability	Meeting	

	
	
	
	

April	19-21,	2016	
Glendale,	AZ	

Post-meeting	Report	
	

	

	

	

	

LLNL-TR-700962	
	
This	work	was	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	Lawrence	Livermore	National	Laboratory	under	Contract	DE-
AC52-07NA27344.	
	
This	document	was	prepared	as	an	account	of	work	sponsored	by	an	agency	of	the	United	States	government.	Neither	the	United	States	
government	nor	Lawrence	Livermore	National	Security,	LLC,	nor	any	of	their	employees	makes	any	warranty,	expressed	or	implied,	or	assumes	
any	legal	liability	or	responsibility	for	the	accuracy,	completeness,	or	usefulness	of	any	information,	apparatus,	product,	or	process	disclosed,	or	
represents	that	its	use	would	not	infringe	privately	owned	rights.	Reference	herein	to	any	specific	commercial	product,	process,	or	service	by	
trade	name,	trademark,	manufacturer,	or	otherwise	does	not	necessarily	constitute	or	imply	its	endorsement,	recommendation,	or	favoring	by	
the	United	States	government	or	Lawrence	Livermore	National	Security,	LLC.	The	views	and	opinions	of	authors	expressed	herein	do	not	
necessarily	state	or	reflect	those	of	the	United	States	government	or	Lawrence	Livermore	National	Security,	LLC,	and	shall	not	be	used	for	
advertising	or	product	endorsement	purposes.	

	

	

2	

Table	of	Contents	

LLNL-TR-700962	..	1	

Executive	Summary	...	3	
Background	..	4	

Goals	...	5	
High-Level	Takeaways	and	Follow-on	Actions	..	6	

Agenda	/	Talks	..	11	
Day	One	..	11	
Overview	of	the	Five	DOE	COEs	..	11	
Recap	of	HPCOR	...	11	
Exascale	Computing	Project	...	11	
Vendor	NDA	Sessions	..	11	
Session:	Applications,	Optimizations,	and	Algorithms	...	12	
Session:	Performance	Portable	Abstractions	..	13	

Day	Two	...	14	
Session:	Managing	the	Memory	Hierarchy	...	14	
Session:	Application	Experience	with	Performance-Portable	Solutions	..	15	
Session:	Experience	with	OpenMP	and	Recommendations	on	Guiding	Future	Standards	17	

Day	Three	..	19	
Session:	Tools	for	Performance	Portability	and	Analysis	..	19	
Session:	The	Input/Output	Bottleneck	and	Use	of	Burst	Buffers	...	20	
Session:	Use	of	Domain-Specific	Languages	for	Performance	Portability	..	21	

Breakout	Discussions	...	22	
Breakout	Session	A:	Managing	the	Memory	Hierarchy	...	22	
Lead:	Doug	Doerfler	(LBNL)	...	22	

Breakout	Session	B:	Managing	the	Memory	Hierarchy	...	24	
Lead:	Bronson	Messer	(ORNL)	..	24	

Session	C:	Performance	Portable	Abstractions	..	27	
Lead:	David	Beckingsale	(LLNL)	...	27	

Breakout	Session	D	–	Performance	Portable	Abstractions	..	30	
Lead:	Rob	Hoekstra	(SNL)	...	30	

Breakout	Session	E:	OpenMP	Futures	..	33	
Lead:	David	Richards	(LLNL)	...	33	

Breakout	Session	F	–	OpenMP	Futures	..	35	
Lead:	Sriram	Swaminarayan	(LANL)	..	35	

Break	out	Session	G:	Tools/Compiler/System	Software	Requirements	36	
Lead:	Edgar	Leon	(LLNL)	...	36	

Breakout	Session	H:	Tools/Compilers/System	Software	Requirements	39	
Lead:	Brian	Freisen	(LBNL)	..	39	

Recommendations	for	Follow-on	Meetings	..	42	

Conclusions	..	42	
Attendee	List	..	43	
	

	

3	

	

Executive	Summary	
Performance	portability	is	a	phrase	often	used,	but	not	well	understood.	The	DOE	is	deploying	systems	
at	all	of	the	major	facilities	across	ASCR	and	ASC	that	are	forcing	application	developers	to	confront	
head-on	the	challenges	of	running	applications	across	these	diverse	systems.	With	GPU-based	systems	
at	the	OLCF	and	LLNL,	and	Phi-based	systems	landing	at	NERSC,	ACES	(LANL/SNL),	and	the	ALCF	–	the	
issue	of	performance	portability	is	confronting	the	DOE	mission	like	never	before.		
	
A	new	best	practice	in	the	DOE	is	to	include	“Centers	of	Excellence”	with	each	major	procurement,	with	
a	goal	of	focusing	efforts	on	preparing	key	applications	to	be	ready	for	the	systems	coming	to	each	site,	
and	engaging	the	vendors	directly	in	a	“shared	fate”	approach	to	ensuring	success.	While	each	COE	is	
necessarily	focused	on	a	particular	deployment,	applications	almost	invariably	must	be	able	to	run	
effectively	across	the	entire	DOE	HPC	ecosystem.	This	tension	between	optimizing	performance	for	a	
particular	platform,	while	still	being	able	to	run	with	acceptable	performance	wherever	the	resources	
are	available,	is	the	crux	of	the	challenge	we	call	“performance	portability”.	This	meeting	was	an	
opportunity	to	bring	application	developers,	software	providers,	and	vendors	together	to	discuss	this	
challenge	and	begin	to	chart	a	path	forward.	
	
As	the	first	large	meeting	of	its	size	focused	on	multiple	COE	efforts	and	vendors,	the	main	goals	were	to	
present	the	breadth	of	work	happening	across	the	DOE	and	vendor	space,	and	begin	building	some	
lasting	efforts	to	make	progress	toward	these	goals.	Applications	developers	must	understand	the	
challenges	and	options	they	have,	and	vendors	should	understand	the	role	they	can	play	in	helping	the	
DOE	succeed	with	this	strategy.	Early	on	in	the	planning,	we	agreed	that	despite	the	fact	that	much	of	
the	work	going	on	within	each	COE	still	contains	proprietary	data	held	under	Non-Disclosure	
Agreements,	that	we	would	make	this	meeting	as	open	as	possible.	A	set	of	guidelines	were	provided	to	
participants	to	ensure	that	the	tone	of	the	meeting	was	not	“us	vs.	them”,	but	collaborative	in	nature.	
NDA	sessions	were	held	to	a	minimum,	or	as	side	meetings	off	the	main	agenda.	However,	participants	
were	limited	(with	a	few	exceptions)	to	DOE	staff	covered	under	the	proper	NDAs	from	all	vendors.	
	
The	meeting	consisted	of	three	days	of	prepared	and	invited	talks,	intermixed	with	breakout	sessions	
aimed	at	encouraging	group	discussion	on	specific	topics	of	interest.	The	agenda,	links	to	the	talks,	and	
breakout	session	notes	are	available	at	https://asc.llnl.gov/DOE-COE-Mtg-2016.	Along	with	some	
detailed	descriptions	of	the	breakout	sessions	and	summaries	and	recommendations	in	this	report,	they	
indicate	both	an	encouraging	message	that	performance	portability	is	within	our	grasp,	but	also	a	clear	
recognition	that	much	work	remains	to	be	done	in	a	relatively	short	amount	of	time.	
	
A	detailed	account	of	the	main	takeaways	is	described	later	in	this	document	starting	on	page	6.	One	of	
the	first	things	we	will	do	is	arrange	for	monthly	telecons	between	the	COE	leads	to	provide	updates,	
and	work	toward	a	model	for	sharing	more	efforts	between	the	labs	and	planning	for	a	follow-on	
meeting	to	be	held	in	the	April	2017	timeframe.		
	
Other	takeaways	are	quickly	summarized	here	as	follows:	

• There	was	great	value	in	having	multiple	vendors	available	for	discussion	in	one	forum,	and	
there	is	a	desire	to	establish	more	of	these	outlets	related	to	this	topic		

	

4	

• MPI+X	dominated	the	discussion.	These	is	little	evidence	yet	of	alternative	programming	models	
addressing	the	performance	portability	issue	in	the	context	of	large,	complex	applications	

• Productivity	should	be	included	as	an	additional	metric	beyond	performance	and	portability.		
• Descriptive	versus	prescriptive	programming	concludes	that	overly-prescriptive	styles	in	pursuit	

of	performance	on	one	platform	can	defeat	performance	portability.	Compilers	must	ultimately	
take	on	more	of	the	work	

• Much	of	the	audience	is	focused	on	future	architectures	under	study	in	the	COEs	(KNL	and	
GPUs).	The	timing	of	this	inaugural	meeting	was	unfortunately	a	bit	early	to	have	much	in	the	
way	of	concrete	experience	with	these	platforms	

• Continued	opportunities	for	cross-COE	collaborations	should	be	pursued	where	possible.	
However…	

• Dissemination	of	information	(e.g.	best	practices	for	performance	portability)	continues	to	be	a	
difficult	issue.	There	is	no	obvious	central	forum	where	multiple	COEs	can	collect	info	while	
ensuring	NDA	information	is	protected	

• C++	generic	programming	(templates)	and	other	modern	features	offer	nice	abstraction	options	
for	generating	platform-specific	code	from	a	single	source	(e.g.	Kokkos	and	RAJA).	The	path	for	
Fortran	codes	is	far	less	clear	

• The	memory	hierarchy	(or	NUMA	domains)	is	seen	as	a	major	challenge	with	little	in	the	way	of	
portable	solutions	if	the	vendor-supplied	hardware	support	for	managing	the	memory	spaces	
does	not	suffice	for	high	performance	codes	

• COEs	as	an	entity	provide	a	good	mechanism	to	bridge	applications	and	software	R&D	
• COEs	are	adopting	many	practices	that	were	successfully	used	in	early	co-design	centers	
• There	is	a	natural	tension	in	compiler	implementations	between	supporting	the	latest	features,	

and	optimizing	the	ones	they	have.		
• OpenMP4.x	early	experiences	are	promising,	but	directives	are	clearly	not	for	everyone	
• And	finally,	there	is	no	universally	accepted	definition	of	performance	portability.	

	
There	was	general	agreement	from	the	steering	committee	and	survey	responses	from	attendees	that	a	
follow-on	meeting	(perhaps	leading	to	an	ongoing	series)	would	be	useful	to	pursue	about	a	year	
following	the	original.	A	number	of	lessons	learned	and	recommendations	for	a	follow-on	meeting	are	
captured	on	page	42.		
	
At	the	time	this	report	was	being	finalized,	Los	Alamos	National	Lab	had	agreed	to	help	pursue	
organizing	a	meeting	in	2017.	Ideas	and	suggestions	can	be	sent	to	coepp-meeting@llnl.gov	and	they	
will	be	forwarded	to	the	planning	committee.	We	look	forward	to	seeing	you	all	there	in	2017!	

Background	
The	Department	of	Energy	(DOE)	Centers	of	Excellence	(COEs)	Performance	Portability	Meeting	
provided	an	opportunity	for	personnel	working	with	the	five	COEs	to	share	ideas,	progress,	and	
challenges	toward	the	goal	of	performance	portability	across	DOE's	large	upcoming	advanced	
architecture	supercomputer	procurements.	The	need	for	applications	to	run	effectively	on	multiple	
vendor	advanced	architecture	solutions	(as	well	as	on	standard	"cluster"	technology)	is	pervasive	across	
application	teams	within	DOE	and	is	a	specified	goal	of	the	DOE's	Exascale	plans	for	risk	mitigation.		

Recognizing	the	challenges	of	porting	and	optimizing	large	applications	to	the	advanced	architecture	
systems	planned	for	deployment	within	the	National	Nuclear	Security	Administration	(NNSA)	and	Office	

	

5	

of	Science	(SC)	labs	between	2016	and	2019,	the	DOE	has	established	a	COE	at	each	laboratory	siting	
one	of	these	systems.	These	COEs	provide	direct	vendor	expertise	to	the	application	teams	and,	in	turn,	
give	the	vendors	deeper	insight	into	how	applications	are	run	on	those	systems.	Each	of	the	five	current	
COEs	has	a	mission	to	optimize	a	set	of	applications	for	their	specific	platform—however	the	application	
teams	are	often	motivated	to	maintain	a	code	base	that	will	run	effectively	across	diverse	vendor	
offerings.	Making	use	of	open	standards,	libraries,	and	software	abstractions	that	allow	for	minimal	
code	disruption	without	negatively	impacting	performance	potential	is	the	preferred	path	to	
programming,	but	it	constitutes	a	large,	as-yet-unsolved	challenge.	

This	meeting	built	on	past	COE	meetings	or	workshops,	most	of	which	were	held	at	one	of	the	labs	
hosting	a	particular	COE.	What	this	meeting	attempted	to	provide	was	a	forum	for	discussing	best	
practices	and	ideas,	focusing	on	achieving	high	performance	on	these	emerging	platforms	without	
greatly	sacrificing	portability	and	maintainability	of	applications.		

Participants	at	the	Meeting	included:		

• Application	developers	and	management	at	the	existing	five	COEs	(LLNL,	LANL/SNL,	ORNL,	
LBL/NERSC,	and	ANL)	who	are	working	on	preparing	their	codes	for	next-gen	architectures	

• Vendors	chosen	to	provide	the	next-generation	platforms	
• Solution-providers	(DOE	or	third	party)	who	are	developing	software	tools	aimed	at	helping	

application	teams	approach	the	challenges	of	performance	portability.		

Because	it	was	open	to	all	vendors	participating	in	the	COEs	(IBM,	Cray,	Intel,	and	NVIDIA),	a	limited	set	
of	vendor	talks	were	given	under	Non-Disclosure	Agreements	(NDAs),	and	accepted	presentations	were	
free	of	NDA	material.	From	the	outset	participants	were	asked	to	join	in	the	spirit	of	cooperation,	and	
follow	a	base	set	of	"ground	rules"	suggested	to	ensure	a	productive	and	non-competitive	meeting.	
Attendance	by	parties	outside	of	the	six	DOE	labs,	the	lab	collaborators,	and	the	four	vendors	involved	in	
current	COEs	was	limited	and	by	invitation	only.		

Goals	
Several	primary	goals	were	considered	when	planning	for	this	meeting	initially	began.	In	addition,	we	list	
as	sub-bullets	a	few	secondary	goals	that	emerged	during	the	planning	and	execution	of	the	meeting.		

• Inform	application	teams	and	tool	developers	of	activities	and	methodologies	being	used	across	
the	COEs,	and	foster	informal	relationships	that	can	help	DOE	participants	benefit	from	activities	
beyond	their	own	COE.	

o Foster	a	better	understanding	of	application	strategies	and	research	programs	across	
the	Office	of	Science	and	NNSA	

• Identify	major	challenges	toward	the	goal	of	performance	portability,	and	work	with	the	
vendors	and	tool	providers	on	determining	implementations	and	solutions	that	will	meet	their	
own	performance	criteria	without	inadvertently	impairing	performance	results	elsewhere.	

o Take	those	challenges	and	begin	thinking	about	a	set	of	follow-on	meetings	that	could	
build	on	this	meeting	

• Communicate	to	the	vendor	community	the	importance	of	performance	portability	to	the	DOE	
application	community	

o Consider	how	performance	portability	can	be	emphasized	in	future	procurements	

As	this	report	hopefully	indicates,	the	goals	of	the	meeting	were	met,	but	work	must	continue	for	them	
to	be	more	fully	realized.	

	

6	

High-Level	Takeaways	and	Follow-on	Actions	
What	follows	is	a	collection	of	high-level	takeaways	that	were	collected	during	and	immediately	
following	the	meeting,	presented	in	no	particular	order.	Sub-bullets	in	italics	represent	some	specific	
follow-on	actions	either	to	consider	for	subsequent	meetings,	or	pursued	and	acted	upon	in	the	interim.	
	
1) There	was	great	value	in	having	vendors	involved.	While	meetings	amongst	DOE	staff	are	common,	

as	are	interactions	between	individual	labs	and	vendors,	this	forum	provided	a	chance	for	vendor	
input	to	be	heard	in	a	broader	forum.	In	particular,	many	participants	noted	that	the	breakout	
sessions	offered	great	opportunities	for	candid	vendor	input	on	specific	topics	of	interest	that	might	
not	always	come	across	in	prepared	talks	

	
• Need	to	establish	additional	outlets	for	how	to	get	vendors	more	engaged	in	discussions	

going	forward.	While	vendor	talks	being	shared	between	COEs	are	useful,	it	is	the	face-to-
face	back-and-forth	on	focused	topics	that	held	the	most	value	for	this	meeting.	The	COEs	
are	a	natural	place	for	this	to	happen,	but	are	often	limited	to	one	lab	<->	one	vendor.	Multi-
lab	and	multi-vendor	focused	discussions	(within	the	limits	of	NDA)	are	highly	valuable	as	
well,	and	we	should	consider	how	to	foster	those	sorts	of	discussions	going	forward.	
	

2) MPI	+	X	dominated	the	discussion,	and	on-node	performance	was	almost	always	the	focus	of	
performance	results	
	

• MPI	was	assumed	to	be	the	de	facto	solution	for	scaling	out,	and	“X”	was	largely	accepted	to	
be	either	OpenMP4,	or	abstraction	layers	that	used	OpenMP4	or	CUDA	beneath.	It	will	be	
important	going	forward	to	both	a)	continue	evaluating	these	approaches	in	the	face	of	very	
large	number	of	nodes	and	b)	include	alternative	approaches	(e.g.	async	task	models)	as	
they	continue	to	mature	in	some	applications.	
	

3) A	third	“P”	needs	to	be	considered	–	Productivity	matters.	Many	of	the	abstractions	and	
programming	models	presented	as	performance	portability	solutions	have	direct	impact	(either	
positive	or	negative)	on	application	developer	productivity.	
	

• Perhaps	the	next	meeting	can	be	called	COE-PP&P?		Note	that	productivity	is	notoriously	
difficult	to	measure	and	it	is	probably	worth	trying	to	come	up	with	some	definitions	
beforehand	to	help	avoid	lengthy	debate.	At	this	meeting,	the	definition	of	performance	
portability	was	not	agreed	upon	at	the	outset	(see	#14),	and	several	speakers	presented	their	
own,	sometimes	conflicting,	views.	

• One	can	hope	that	when	confronted	with	these	three	metrics	of	performance,	portability,	
and	productivity	–	the	answer	is	not	“choose	any	two,	and	give	up	on	the	third”.	E.g.	Matlab	
=	Productivity	+	portability	without	performance.	OpenMP	=	Portability	+	performance	
without	productivity.	Solutions	that	address	all	three	metrics	are	desired.	

	
4) Descriptive	beats	prescriptive	for	portability.	Jeff	Larkin’s	talk	captured	this	concept	most	succinctly,	

but	it	was	an	underlying	theme	for	several	other	talks	as	well.	Prescriptive	programming	may	offer	
the	best	performance	on	a	particular	instance	of	a	platform,	but	we	must	find	the	balance	between	
over-prescribing	(e.g.	specific	thread	counts,	scheduling	mechanisms,	etc.)	and	letting	the	compiler	
choose	the	best	approaches.	
	

	

7	

• Oscar	Hernandez’s	talk	on	the	rules	that	the	SPEC	HPC	group	uses	for	OpenMP4.x	represent	
a	possible	starting	point	for	some	community	accepted	best	practices	around	this	concept	of	
avoiding	over-prescription.	

• The	OpenMP	standard	needs	to	explore	more	“descriptive”	options	in	its	design,	which	
currently	leans	more	toward	prescriptive.	This	will	put	more	onus	on	the	underlying	
compilers	and	runtimes	for	performance,	and	users	must	understand	the	tradeoffs	while	
compilers	mature.	However,	current	struggles	with	existing	vendor-provided	compilers	being	
able	to	build,	optimize	and	provide	correct	results	make	application	developers	leery	of	
descriptive	approaches	that	rely	more	on	the	compiler.		Strengthening	the	requirements	in	
procurement	documents	and	providing	adequate	funding	will	help	to	ensure	vendor	provided	
compilers	meet	current	DOE	needs	and	pave	the	way	for	performance	portability.		

	
5) There	are	many	unknowns	about	the	impact	of	specific	approaches	as	of	the	time	of	this	meeting.	

While	we	know	that	KNL	and	NVLINK	machines	are	coming	in	the	future,	there	was	little	in	the	way	
of	early-delivery	hardware	available	that	could	allow	people	to	draw	firm	conclusions	about	
performance	impacts	of	various	approaches.	The	same	goes	for	OpenMP4.5	compilers,	which	are	
still	largely	in	beta	–	or	do	not	fully	support	GPUs	yet.		

	
• This	will	hopefully	be	alleviated	by	the	time	we	have	a	next	meeting	–	at	least	with	KNL	and	

Power8+GPU	with	NVLINK	coming	online	in	2016.	One	anticipates	that	at	a	follow-on	
meeting,	there	will	be	much	more	opportunity	to	evaluate	performance	portability	on	
hardware	and	compilers	that	will	be	representative	of	future	pre-exascale	procurements.	
However,	even	though	reporting	of	performance	on	publicly	available	platforms	may	not	be	
considered	NDA	in	the	future,	we	need	to	continue	to	abide	by	the	original	guidelines	to	
avoid	pitting	platform	vs.	platform	in	a	multi-vendor	environment.	
	

6) Opportunities	abound	for	more	focused	cross-COE	collaborations.	Many	COEs	are	holding	trainings,	
workshops,	working	groups,	etc.…	that	would	be	of	value	to	many	of	the	participants	of	this	
meeting.	
	

• LLNL	will	arrange	for	monthly	telecons	to	take	place	between	the	COE	leads,	starting	in	the	
fall	of	2016.	Goals	will	be	to	increase	opportunities	for	sharing	of	information	across	the	
COEs,	and	begin	strategizing	for	a	follow-on	COE-PP	meeting	to	be	held	in	the	April	2017	
timeframe.	Vendor	participation	will	be	considered	on	an	as-needed	basis,	but	for	purposes	
of	being	able	to	discuss	issues	under	Non-Disclosure,	they	will	not	be	included	by	default.	

• Need	to	capture	topic	areas	of	broad	interest	and	provide	a	forum	for	more	collaboration.	
E.g.	LANL-hosted	Trinity’s	knlchatter	email	list	and	bi-weekly	KNL	working	group	meeting.	
LLNL	is	planning	on	a	similar	forum,	and	will	invite	others	to	participate	in	calls.	

• The	labs	widespread	adoption	of	conferencing	tools	like	WebEx	is	invaluable	toward	
enabling	collaboration	and	information	sharing.		

	
7) We	need	to	have	best	practices	for	performance	portability	that	can	broadly	disseminated	and	

vetted	through	multiple	COE	experiences	–	but	there	are	questions	about	how	to	best	capture,	
populate,	and	disseminate	these.	
	

• Everyone	seems	to	agree	that	as	best	practices	emerge	from	the	COEs,	there	needs	to	be	a	
way	to	communicate	these	broadly	(e.g.	dynamically	updated	websites	and	occasional	
publications).	COE	leads	here	should	try	to	figure	out	a	way	we	can	share	non-NDA	

	

8	

information	between	each	other.	This	could	involve	a	centralized	repository,	but	also	needs	
incentives	for	people	to	share	their	experiences	in	a	way	that	is	generally	applicable	to	a	
broader	audience.	This	will	be	one	topic	of	the	above	mentioned	monthly	COE	meetings.	

• There	are	many	logistical	obstacles	(e.g.	security,	maintenance,	access	control)	to	sharing	
information	between	all	labs.		Future	DOE	data	management	infrastructure	should	include	
mechanisms	for	information	sharing	to	minimize	duplication	of	efforts	and	maximize	
progress	on	large	scale	platforms.			
	

8) C++	applications	using	Kokkos	or	RAJA	(two	of	the	more	commonly	discussed	abstraction	layers)	
seem	to	have	a	path	forward	if	they	choose	to	adopt	either	of	these	approaches.	However,	the	path	
is	less	clear	for	Fortran	–	which	doesn’t	have	native	support	for	generic	meta-programming	
(templates).	
	

• DSLs	and	code	generation	are	perhaps	a	path	forward	(e.g.	Richards,	Van	Straalen),	as	are	
best	practices	for	uses	of	the	language	that	can	be	optimized	by	the	compiler.	(e.g.	
elemental	functions	[Pennycook]).	

• Compiler	support	for	these	abstractions	is	critical	to	ensuring	they	can	be	a	viable	path	to	
performance	portability.		Both	RAJA	and	Kokkos	have	suffered	through	compiler	issues	that	
have	impeded	their	development	progress.	

	
9) There	are	many	unknowns	in	how	to	deal	with	the	memory	hierarchy	on	node	in	light	of	a	hardware	

managed	single	address	space	(e.g.	KNL	cache	mode,	or	NVLINK	coherence).		Will	the	hardware-
based	solutions	suffice,	or	do	we	need	to	be	application	managed?	And	if	the	latter,	how	can	we	do	
this	portably?	
	

• Real	code	experience	with	KNL	HBM	and	upcoming	NVLINK	will	help	answer	the	question	of	
how	much	manual	management	is	really	necessary.	This	should	probably	be	the	focus	of	
some	talks	at	a	follow-on	meeting.	Hard	data	is	emerging	on	the	effectiveness	of	KNL	“cache	
mode”	and	GPU	“unified	memory”.	
	

10) COEs	provide	a	good	mechanism	to	bridge	applications	and	software	R&D	
	

• This	meeting	was	a	nice	mixture	of	applications	people,	researchers,	and	production	
software	and	tool	developers.	That	mix	is	important,	and	something	we	should	continue	to	
strive	for	in	future	meetings.	

	
11) Goals	of	the	COEs	are	highly	correlated	with	goals	of	co-design.	Hack-a-thons,	Dungeon	Sessions,	

Boot	Camps,	…	these	are	all	highly	effective	co-design	and	training	mechanisms.	
	

• Best	practices	for	how	to	run	one	of	these	sessions	are	emerging.	We	should	capture	these	
from	vendors	and	attendees	of	successful	sessions	to	ensure	that	as	these	opportunities	
grow	and	expand,	we	continue	to	build	on	successes.	

	
12) Are	programming	language	standards	perhaps	becoming	too	big	and/or	complex?		Where	are	DOE	

priorities	in	supporting	new	features	vs.	optimizing	existing	ones?	And	how	effectively	are	we	using	
our	large	procurements	to	drive	our	actual	priorities	regarding	compiler	support?	
	

	

9	

• An	interesting	discussion	that	broke	out	during	the	conclusion	of	the	meeting	as	well	as	in	
several	breakouts,	revealed	the	existing	tensions	the	vendor	compiler	teams	have	between	
producing	optimized	implementations	of	existing	language	features	versus	addressing	the	
rapidly	emerging	language	standards	(particularly	in	C++,	which	is	now	on	the	3	year	
cadence).	We	all	like	to	have	additional,	vendor-supported	features	(e.g.	for	parallelism	or	
memory	management)	built	into	standards.	However,	we	also	like	to	have	attention	paid	to	
vendors	making	existing	features	robust	and	optimized.		

• Lesson:	We	need	to	be	careful	about	asking	for	too	much	in	the	language	standards,	or	at	a	
minimum	–	make	clear	what	our	priorities	are	for	features	vs.	optimizations.	Large	
procurements	are	the	best	mechanism	for	making	DOE	priorities	clear	to	the	vendors,	and	
more	attention	should	be	paid	to	clearly	specifying	compiler	expectations	in	those	
procurement	RFPs	and	contracts.	
	

13) OpenMP4.x	early	experiences	are	encouraging,	but	directives	are	not	for	everyone,	and	can	severely	
clutter	up	otherwise	simple	code.	Language	features	(i.e.	part	of	the	language	standard,	not	add-on	
directives)	seem	to	be	generally	preferred,	but	we	don’t	yet	have	(m)any	examples	of	where	this	has	
been	successful.	
	

• Need	to	continue	to	push	OpenMP	standards,	and	begin	to	understand	practices	that	allow	
for	it	to	work	well	across	both	multi-core	and	GPUs.	Language	features	for	parallelism	and	
memory	management	are	longer-term	goals,	but	we	must	be	careful	not	to	ask	for	so	many	
features	in	our	HPC	languages	that	we	negatively	impact	vendors’	abilities	to	support	
optimized	compilers	(see	#12)	

• Standards	adoption	takes	place	on	a	lengthy	timeline	not	always	conducive	to	rapid	
adoption	by	code	teams.	Further	discussion	of	this	issue	and	the	impact	on	code	teams	who	
might	otherwise	consider	their	use	is	needed.	

	
14) There	is	not	yet	a	universally	accepted	definition	of	“performance	portability”		

• Several	attempts	were	made	by	various	speakers	to	take	a	crack	at	what	it	really	means	to	
be	performance	portable.	While	everyone	is	in	basic	agreement,	there	are	nuances	in	the	
definitions.		Examples:	

o “For	purposes	of	this	meeting,	it	is	the	ability	to	run	an	application	with	acceptable	
performance	across	KNL	and	GPU-based	systems	with	a	single	version	of	source	
code.”	(Neely)	

o “An	application	is	performance	portable	if	it	achieves	a	consistent	level	of	
performance	(e.g.	defined	by	execution	time	or	other	figure	of	merit,	not	
percentage	of	peak	flops	across	platforms	relative	to	the	best	known	
implementation	on	each	platform”	(Pennycook)	

o “Hard	portability	=	no	code	changes	and	no	tuning.	Software	portability	=	simple	
code	mods	with	no	algorithmic	changes.	Non-portable	=	algorithmic	changes”	
(Pope,	Morozov)	

o “The	same	source	code	will	run	productively	on	a	variety	of	different	architectures”	
(Larkin)	

o “A	code	is	performance	portable	when	the	application	team	says	its	performance	
portable!”	(Richards)	
	

As	one	participant	put	it	during	a	discussion	on	the	topic	during	the	Intel	NDA	session	that	
Pennycook	and	Reinders	led:	“Let	us	not	get	tied	up	in	definitions.	Performance	portability	

	

10	

means	different	things	to	different	people	and	we	need	to	accept	that.		Both	performance	and	
portability	are	poorly	defined	and	depend	on	the	applications.		Every	app	has	different	
constraints	and	there	is	no	way	to	get	around	it.”	And	that,	folks,	is	probably	where	we	have	to	
leave	it!	(But	it	certainly	didn’t	keep	others	from	trying).	

	 	

Agenda	/	Talks		

	

11	

Agenda	/	Talks	
	
What	follows	is	an	overview	of	the	talks	provided	as	part	of	the	planned	agenda.	The	descriptions	
provided	within	are	meant	to	be	short	summaries	aimed	at	getting	readers	interested	in	taking	a	look	at	
the	presentation,	and	making	contact	with	the	author	for	any	follow-up	discussions.	Links	to	most	of	the	
talks	are	available	at	https://asc.llnl.gov/DOE-COE-Mtg-2016,	and	direct	links	are	provided	in	the	
descriptions	provided	below	as	well.	

Day	One	

Overview	of	the	Five	DOE	COEs	
After	a	brief	kickoff	talk	to	motivate	the	goals	for	the	workshop,	each	of	the	COE	leads	from	ORNL,	LBL,	
LLNL,	LANL/SNL	(ACES),	and	ANL	gave	an	overview	of	their	Center	–	all	of	which	are	in	various	stages	of	
being	stood	up.	All	have	a	common	goal	of	application	preparedness,	with	the	main	differences	between	
the	Centers	being	a)	How	the	applications	were	selected,	and	b)	How	the	vendor	partnerships	were	
being	utilized.	

Recap	of	HPCOR		
Nick	Romero	(ANL)	gave	an	update	on	an	HPCOR	workshop	held	back	in	Sept	2015	where	a	number	of	
best	practices	were	discussed	–	some	of	which	were	directly	related	to	the	goals	of	performance	
portability.	Many	of	the	best	practices	are	not	surprising,	and	include	practices	such	as	use	of	good	
abstractions,	libraries,	good	testing,	training,	and	the	development	of	the	COEs	themselves.	Perhaps	
more	interesting	were	the	“failures”,	or	anti-best-practices,	which	included:	vendor	proprietary	code	
and	libraries,	OpenCL,	portability	via	two	common	code	branches,	the	number	and	variety	of	libraries	
growing	beyond	the	ability	to	support	them,	the	fact	that	libraries	do	not	interoperate	due	to	different	
programming/threading	models,	“hero”	codes,	translations	from	prototype-like	codes	to	compiled	C++	
codes,	and	unspecified	support	models.	

Exascale	Computing	Project	
Bert	Still	(LLNL)	was	one	of	several	people	representing	the	Exascale	Computing	Project	in	the	audience,	
and	offered	an	update	on	where	the	Applications	Focus	Area	of	the	ECP	stood.	All	signs	point	to	the	ECP	
and	DOE	continuing	to	procure	diverse	platforms	at	the	different	labs	for	risk	mitigation,	making	
performance	portability	a	critical	ongoing	issue.	

Vendor	NDA	Sessions	
The	morning	of	the	first	day	concluded	with	Intel	and	NVIDIA	each	taking	an	hour	to	discuss	topics	that	
could	include	developments	currently	under	Non-Disclosure	Agreements.	Because	the	invitation	list	for	
the	meeting	was	largely	restricted	to	DOE	employees	and	collaborators	covered	under	NDA,	most	
attendees	(other	than	the	competing	vendors)	were	able	to	sit	in	on	these	discussions.		
	
John	Pennycook	and	James	Reinders	(Intel)	took	their	hour	to	lead	an	open-ended	discussion	on	issues	
of	performance	portability.	Intel	pointed	out	that	despite	their	recognition	in	the	HPC	market	being	
mostly	for	Xeon	and	Xeon	Phi,	that	they	are	actually	a	very	large	GPU	chipmaker	and	perhaps	the	largest	
users	of	GPUs,	so	performance	portability	is	important	to	the	company	as	a	whole.	A	long	debate	on	the	
definition	performance	portability	ensued.	
	

Agenda	/	Talks		

	

12	

Cyril	Zeller	(NVIDIA)	gave	an	overview	of	the	NVIDIA	programming	model	vision,	and	a	recap	of	a	
number	of	announcements	that	were	made	at	the	recently	concluded	2016	GPU	Technology	Conference	
(GTC).	The	Pascal	(P100)	GPU	and	corresponding	CUDA	8	compiler	greatly	simplify	the	programming	
model	with	respect	to	memory	–	providing	a	unified	memory	space,	and	advice	to	the	runtime	on	
dynamic	memory	behavior.	Further	improvements	are	in	the	works,	including	partnering	with	Red	Hat	
on	OS	support	for	heterogeneous	memory	with	an	open	source	driver	that	should	be	applicable	to	other	
devices	as	well.		
	
Both	vendors	were	asked	a	lot	of	questions	about	compilers	and	language	support	–	an	early	indication	
of	where	much	of	the	discussion	would	lead	as	the	meeting	went	on.	
	

Session:	Applications,	Optimizations,	and	Algorithms	
The	first	session	of	talks	focused	on	work	that’s	ongoing	from	the	applications	side	to	optimize	for	
advanced	architectures	using	a	variety	of	techniques.	
	
Jae-Seung	Yeom	(LLNL)	discussed	using	learning/training	techniques	(specifically	neural	word	
embedding)	to	optimize	sparse	linear	matrix	solves	given	variations	over	the	input,	data	representation,	
and	algorithm.	To	optimize	the	training	data	set,	they	used	a	GBM	(Gradient	Boosted	Machine)	to	select	
features	based	on	relative	importance.	Different	combinations	of	preconditioners	and	linear	solvers	
were	tested.		
	
Charles	Ferenbaugh	(LANL)	talked	about	performance	research	he’s	doing	with	a	proxy	app	called	
Pennant,	which	includes	arbitrary	polygonal	meshes	and	a	subset	of	physics	from	the	Rad-Hydro	code	
FLAG.	He	concludes	that	at	the	time	of	his	study	(1-2	years	prior),	fine-grained	concurrency	was	still	far	
from	being	performant	on	Sandy	Bridge	processors,	and	that	high-level	(i.e.	coarse-grained)	threading	
consistently	outperformed	it	at	the	expense	of	perhaps	some	additional	code	refactoring.	
	
Scott	Parker	(ANL)	discussed	Nekbone,	a	proxy	app	for	Nek5000	–	a	long-lived	spectral	element	CFD	
solver	for	unsteady	incompressible	Navier-Stokes.		The	smaller	size	of	Nekbone	allowed	them	to	build	a	
performance	model.	By	comparing	predicted	to	actual	performance,	they	can	focus	in	on	areas	where	
the	machine	is	perhaps	not	reaching	its	potential.	Their	experience	to	date	has	been	with	BG/Q,	but	it	is	
now	up	and	running	on	KNL.	
	
Kris	Garrett	(LANL)	showed	some	results	from	early	runs	of	a	mini-app	(Tycho	2)	based	on	neutral	
particle	transport	sweeps	on	unstructured	tetrahedral	grids	found	in	the	Capsaicin	code.	His	experience	
was	that	porting	to	KNL	(B0	testbeds)	was	quite	easy,	and	got	comparable	results	running	MPI	
everywhere	or	in	a	hybrid	MPI-OpenMP	mode.	
	
Adrian	Pope	and	Vitali	Morozov	(ANL)	tag-teamed	on	a	talk	covering	HACC,	a	Cosmology	code	that	has	
won	the	Gordon	Bell	prize	twice,	and	has	been	designed	for	performance	as	a	“first-class	requirement”.	
They	introduced	a	definition	of	three	levels	of	portability:	hard	portability	(no	code	changes	required),	
soft	portability	(simple	changes,	none	algorithmic),	and	non-portable	(algorithmic	changes	required).	
Their	design	principle	is	for	hard	portability,	and	the	use	of	microkernels	tuned	for	a	specific	architecture	
if	necessary.	Their	talk	gave	several	examples	of	both,	with	some	hard	numbers	for	BG/Q,	and	
indications	of	similar	benefits	on	early	KNL	hardware.	
	

Agenda	/	Talks		

	

13	

Kristopher	Keipert	(Iowa	State,	partnered	with	ALCF)	presented	an	overview	how	the	GAMESS	atomic	
structure	code	has	evolved	over	the	years	to	address	new	platforms.	Early	results	on	the	Xeon	Phi	were	
presented.	He	then	discussed	development	of	a	new	Electron	Integral	library	(libERD)	and	the	process	
and	results	of	integrating	it	into	GAMESS.	
	
Steve	Rennich	(NVIDIA)	works	with	the	Sierra	COE	team	at	LLNL,	and	under	that	COE	has	developed	an	
optimized	algorithm	for	neutral	particle	transport	sweeps	on	a	structured	mesh,	which	he	covered	in	
this	talk.	The	technique	uses	a	combination	of	KBA	and	hyperplane	methods	to	find	a	sweet	spot	for	
optimizing	memory	bandwidth	and	reducing	synchronization	points.	The	work	thus	far	has	been	done	in	
CUDA,	but	there	is	ongoing	work	with	a	colleague	at	IBM	on	an	OpenMP4	version.	
	
Balint	Joo	(Jefferson	Lab,	partnered	with	ALCF)	represented	work	done	by	a	large	team	on	the	USQCD	
Lattice	QCD	code	–	which	is	built	on	varying	layers	of	abstraction	(with	the	focus	of	this	talk	on	the	
middle	“level	2”	abstractions).	The	code	has	historically	been	very	portable,	but	due	to	an	AOS	(array	of	
struct)	data	layout	has	been	difficult	to	vectorize.	He	talked	about	the	QUDA	DSL,	as	well	as	experience	
with	QDP-JIT	for	LLVM	JIT	compilation.	He	then	turned	to	some	template	meta-programming	examples	
to	improve	bottlenecks	in	QDP++	from	the	University	of	Edinburgh	(Grid),	QEX	done	at	the	ALCF	based	
on	the	NM	language,	and	Sandia	(Kokkos)	with	some	promising	performance	results	of	the	latter	
compared	to	hand-tuned	C++	code.	He	concluded	with	lessons	learned	from	each	of	the	approaches	
presented.	
	
Alvaro	Vazquez-Mayagoitia	(ANL)	concluded	the	session	discussing	the	Electronic	Structure	
Infrastructure	Library	(ELSI)	designed	to	accelerate	electronic	structure	simulations,	which	take	a	
significant	portion	of	compute	time	on	ALCF.	ELSI	provides	the	user	with	an	interface	that	uses	
optimized	solvers	for	various	matrix	and	eigenvalue	solvers	–	specifically	ELPA,	libOMM,	and	PEXSI.	
Going	forward,	they	plan	to	support	GPU	and	many-core	architectures.	
	

Session:	Performance	Portable	Abstractions	
The	first	day	concluded	with	a	session	on	general	software	techniques	being	developed	to	support	
applications	for	performance	portability.	Many	of	these	abstractions	were	then	presented	in	a	
subsequent	session	that	talked	about	application	experience	with	these	techniques,	and	were	further	
discussed	in	a	set	of	breakout	sessions.	
	
Tan	Nguyen	(LBNL)	presented	work	done	with	TiDA	(Tiling	as	a	Durable	Abstraction)	that	handles	locality	
through	tiling	abstractions	–	effectively	partitioning	work	into	smaller	chunks,	maintaining	a	small	
amount	of	meta-data	associated	with	each	tile,	and	managing	the	memory	hierarchy	to	provide	
maximum	data	reuse	by	threads.	Work	to	integrate	TiDA	into	BoxLib	(AMR	library)	was	presented	along	
with	some	promising	performance	results	on	the	MG	and	SMC	proxy	applications.	He	then	presented	
some	work	to	extend	TiDA	to	task-based	parallelism	in	Perilla,	which	uses	a	runtime	to	manage	data	
locality.	
	
Jeff	Vetter	(ORNL)	gave	a	broad	overview	of	performance	portability	work	his	team	has	been	doing,	with	
some	detailed	results	of	12	applications	using	the	OpenARC	compiler	targeting	the	ARES	HLIR	(High	Level	
Intermediate	Representation)	and	LLVM	across	four	architectures	(NVIDIA	GPU,	AMD,	ARM,	and	Xeon	
Phi).	Looking	forward,	they	are	looking	at	FPGA	portability,	and	thinking	how	to	integration	NVRAM	into	
the	mix	of	architectural	features	using	NVL-C.	
	

Agenda	/	Talks		

	

14	

Christian	Trott	(SNL)	talked	about	progress	on	Kokkos,	a	C++	template	meta-programming	technique	
that	abstracts	concepts	of	execution	and	memory	spaces.	Kokkos	is	in	production	and	is	tested	and	
ported	on	a	large	number	of	different	systems.	Results	on	the	widely	used	LAMMPS	code	were	
presented	as	motivation.	He	then	went	into	some	detailed	discussion	of	the	handling	of	atomic	
operations	and	how	Kokkos	can	portably	handle	those	using	multiple	techniques.	He	then	discussed	the	
ongoing	development	of	KokkosKernels,	which	provides	a	portable	interface	to	Level	1,2,	and	3	BLAS,	
and	other	sparse	matrix	and	tensor	kernels.	Finally,	he	shared	some	common	performance	issues	when	
techniques	like	Kokkos	are	utilized,	including	issues	with	optimizations,	elements	of	the	language	
standards,	and	OpenMP4	deficiencies.		
	
Rich	Hornung	(LLNL)	then	talked	about	RAJA,	which	has	some	similarities	to	Kokkos.	RAJA	provides	an	
API	(also	based	on	C++	templates	and	lambda	functions)	to	express	different	forms	of	parallelism,	
traversal	policies,	and	reduction	operations,	and	is	designed	to	be	approachable	and	simple	to	
applications.	In	many	cases,	the	loop	body	will	remain	unchanged	from	the	original	code.	RAJA	is	meant	
to	be	somewhat	customizable	such	that	applications	can	tailor	the	look-and-feel	to	their	application	
domain	and	common	patterns.	The	concept	of	an	IndexSet	is	used	to	abstract	array	traversal	methods	
and	potentially	avoid	race	conditions	that	would	be	inherent	in	a	standard	loop.	Updated	results	on	the	
LULESH	proxy	app	were	presented,	as	well	as	some	forward	references	to	other	talks	at	the	meeting	
that	are	building	on	top	of	RAJA	to	support	memory	placement	and	motion.	He	concluded	by	talking	
about	co-design	with	compiler	and	tool	teams	to	support	optimizations	–	a	concern	and	approach	
shared	with	the	Kokkos	team.	
	
Arpith	Jacob	(IBM)	is	working	with	the	Sierra	COE	at	LLNL,	and	talked	about	work	ongoing	at	IBM	to	
build	an	OpenMP4.5	compiler	that	can	support	RAJA	on	CPU/GPU	architectures,	and	the	challenges	they	
ran	into	-	including	lambda	capture	of	variables	and	defining	a	GPU	kernel	for	the	lambda	loop	body.	
Results	using	the	LCALS	proxy	app	were	presented,	showing	promising	early	results.		
	

Day	Two	

Session:	Managing	the	Memory	Hierarchy	
This	session	was	intended	to	address	current	R&D	aimed	at	managing	multi-level	coherent	memories	
that	will	be	common	in	future	architectures.	While	coherent	memory	promises	an	easier	programming	
model,	it	is	unclear	as	of	yet	whether	vendor-provided	hardware	solutions	for	managing	movement	of	
data	into	“fast”	memory	(e.g.	MCDRAM	on	KNL,	and	GPU	memory	on	Sierra/Summit	architectures)	will	
suffice,	or	if	applications	will	still	end	up	needing	to	explicitly	manage	motion	somehow	to	achieve	
maximum	performance.	And	if	so	–	how	can	this	be	done	in	a	way	that	is	portable	across	these	diverse	
architectures?	
	
David	Poliakoff	(LLNL)	began	the	session	with	a	talk	on	CHAI	(Copy-Hiding	Application	Interface)	which	
uses	lambda	capture	of	variables	in	programming	models	such	as	RAJA	(or	potentially	Kokkos)	in	concert	
with	a	simple	runtime	to	automatically	determine	which	data	needs	to	be	copied	into	HBM	or	GPU	
memory.	The	programmer	must	define	pointers	using	a	special	“managed”	type	declaration,	and	the	
rest	is	automated	by	a	simplified	runtime	that	keeps	track	of	where	data	currently	lives,	and	whether	it	
needs	to	be	explicitly	moved	at	the	time	the	kernel	is	launched	and	terminated.	It	is	only	managing	
memory	motion	on-node	–	there	is	no	concept	of	cross-node	memory	motion.	CHAI	is	in	early	
development,	but	is	showing	promising	results	–	and	could	potentially	be	more	efficient	than	page-
based	or	cache-line	based	hardware	methods	by	copying	only	the	data	required	for	the	kernel.	

Agenda	/	Talks		

	

15	

	
Nicholai	Sakharnykh	(NVIDIA)	presented	some	novel	accelerator	techniques	using	HPCMG	(an	emerging	
multi-grid	solver	benchmark)	to	demonstrate	how	a	program	can	dynamically	select	whether	to	run	on	
the	CPU	or	GPU	based	on	the	coarseness	of	the	problem	(which	in	turn	depends	on	where	in	the	AMG	
“V-cycle”	it	is).	If	the	kernel	is	executing	>	10k	grid	points,	it	is	optimal	to	run	on	the	GPU	(TOC)	–	
otherwise	on	the	CPU	(LOC).	The	use	of	unified	memory	simplifies	the	memory	management,	and	
minimizes	memory	paging.	
	
Fabian	Delalondre	(ANL)	discussed	the	Blue	Brain	project	in	the	EU.	The	application	is	complex,	but	
approximately	85%	of	the	compute	time	is	spent	in	a	relatively	small	number	of	kernels.	They	use	a	DSL	
(NMODL)	and	some	mini-apps	to	develop	their	techniques,	which	have	been	tested	on	BGAS	(BlueGene	
Active	Storage).	They	are	working	to	support	the	Dynamic	Exascale	Entry	Platform	(DEEP)	–	a	core	of	the	
EU	strategy	for	exascale.	Usability	of	the	application	and	a	focus	on	user	workflow	is	paramount	to	their	
efforts.	
	
Luiz	DeRose	(Cray)	presented	some	early	prototype	work	Cray	is	doing	to	support	managing	data	motion	
on	KNL	through	the	use	of	directives.	A	pragma	is	used	to	determine	memory	placement,	and	they	are	
working	with	the	OpenMP	committee	to	get	the	concepts	adopted	in	OpenMP	5.0.	The	talk	generated	a	
number	of	good	questions	and	suggestions,	and	Cray	will	take	those	into	consideration	as	this	work	
evolves.	
	
Ian	Karlin	(LLNL)	ended	the	session	with	a	paper	study	performed	by	the	three	NNSA	labs	and	AWE	
regarding	the	issue	of	memory	management.	A	number	of	use	cases	(six	in	total)	were	presented	that	
outline	likely	places	where	programmers	will	want	to	be	able	to	query	the	system.	For	example,	when	
applications	are	developed	in	a	component-wise	fashion	(or	in	the	general	case,	use	libraries),	there	is	
no	standard	way	to	determine	the	state	of	memory	across	the	“handoff”.	The	other	use	cases	are	
presented	in	the	talk.	The	intent	is	to	use	these	as	a	starting	point	for	working	with	vendors	on	a	set	of	
APIs	or	a	programming	model	that	is	portable	across	diverse	systems.	
	

Session:	Application	Experience	with	Performance-Portable	Solutions	
This	session	was	a	follow-on	to	the	day-one	discussions	on	general	solutions	being	developed	for	
performance-portability,	with	this	session	focusing	on	early	application	experience	with	these	
techniques.		
	
Changhoan	Kim	(IBM)	kicked	off	the	session	with	a	talk	on	an	architecture-independent	abstraction	for	
unstructured	mesh	objects.	Concepts	are	decomposed	into	Acode	(application	code),	which	borrows	the	
OO	concepts	of	encapsulation,	attributed	variables,	and	inheritance.	Acode	concepts	use	class	
descriptions	(fibers),	parallelism	(arrays/vectors	of	fibers)	and	a	dependency	graph.	Scode	(scheduling	
code)	focuses	on	programmability	of	the	automatic	compiler	and	runtime	scheduling.	A	real-world	
example	was	given	using	the	IBM	neuro	simulator.		
	
Adam	Kunen	(LLNL)	talked	about	developing	new	concepts	in	RAJA	to	support	nested	loop	structures	
common	in	structured	deterministic	transport.	Nested	loops	over	zones,	angles,	and	energy	groups	are	
dependent	upon	a	number	of	factors	–	including	the	target	architecture,	compiler,	and	even	problem	
size.	Thus	a	dynamic	way	to	choose	the	nesting	loop	structure	and	data	layout	is	required	that	doesn’t	
require	hand-coding	all	permutations	of	the	loop	nesting.	Early	work	on	the	mini-app	Kripke	has	been	

Agenda	/	Talks		

	

16	

promising,	and	the	work	is	moving	into	the	production	code	that	it	represents.	The	nested-loop	
constructs	he	developed	are	part	of	the	official	RAJA	release	as	well.	
	
Stan	Moore	(SNL)	discussed	the	use	of	Kokkos	in	a	new	Direct	Simulation	Monte	Carlo	code	called	
SPARTA.	He	discussed	the	methodology	and	workflow	used	to	introduce	Kokkos	incrementally	through	
bottleneck	identification	and	incremental	addition	of	parallel	for,	reductions,	and	scan	operations.	
Currently	Kokkos	is	an	optional	package	in	SPARTA,	so	multiple	versions	of	the	code	are	maintained,	but	
he	found	Kokkos	to	be	relatively	non-invasive,	and	allowed	him	to	run	on	GPUs	with	relatively	little	
effort.		
	
David	Beckingsale	(LLNL)	then	discussed	Apollo	–	an	auto-tuning	extension	to	RAJA	that	uses	pre-trained	
models	(machine	learning)	to	select	the	best	execution	policies	in	RAJA	on	a	kernel-by-kernel	basis.	
Initial	studies	using	the	AMR	mini-app	Cleverleaf	demonstrated	up	to	a	4.8x	speedup.	Training	is	done	
off-line	to	generate	the	models,	but	is	relatively	inexpensive.	Current	work	has	been	done	on	
homogenous	nodes,	but	work	is	being	extended	to	GPUs	to	help	predict	which	kernels	will	execute	best	
there.	
	
Geoff	Womeldorff	(LANL)	discussed	work	being	done	in	a	structured	deterministic	transport	mini-app	
called	SNAP	to	use	Kokkos	and	Legion.	Kokkos	is	used	for	on-node	parallelism,	and	Legion	is	used	at	the	
system	level	to	manage	coarse-grained	parallelism.	Together,	Legion	and	Kokkos	have	the	potential	to	
greatly	reduce	programmer	effort.	A	number	of	results	showing	different	approaches	and	levels	of	
tuning	with	Kokkos	were	presented,	with	promising	performance	results.		
	
Ryan	Bleile	(LLNL)	talked	about	early	research	in	a	small	monte-carlo	mini	app	to	look	at	event-based	
techniques,	which	effectively	batch	particles	into	groups	that	will	perform	common	operations	so	that	
low-level	SIMD/SIMT	style	parallelism	can	be	exploited.	Work	was	initially	done	in	CUDA,	followed	by	
implementations	in	Thrust	and	RAJA	–	which	were	relatively	easy	once	the	data	structures	were	
modified	for	CUDA.	A	factor	2x	speedup	was	demonstrated	in	a	10M-particle	simulation.	
	
Matt	Martineau	(Bristol	University)	joined	from	overseas	to	discuss	results	that	his	team	(led	by	Simon	
McIntosh-Smith)	is	doing	to	evaluate	performance-portable	solutions.	They	studied	several	applications	
(TeaLeaf,	CloverLeaf	and	BUDE	[molecular	docking])	on	CPUs,	GPUs,	and	Intel	KNC.	They	used	a	
combination	of	OpenMP4,	OpenACC,	OpenCL,	Kokkos	and	RAJA	in	various	experimental	configurations.	
Their	results	showed	that	in	general	the	abstractions	were	able	to	achieve	close	to	the	results	of	native	
optimized	results	(CUDA	or	OpenCL),	and	simplified	the	programming	effort	–	concluding	that	portability	
and	reducing	complexity	for	the	application	programmer	can	be	balanced	with	good	performance.	
	
Leopold	Grinberg	(IBM)	discussed	his	experiences	in	developing	a	performance-portable	
implementation	of	sparse	linear	algebra	options	(Sparse	matrix-vector	multiple	and	Symmetric	Guass-
Siedel)	using	a	Power8	CPU	and	K80	GPU.	His	goals	were	to	find	a	data	layout	that	worked	well	on	both	
the	CPU	and	the	GPU,	could	switch	between	devices	dynamically	at	runtime,	had	no	hardcoded	kernel	
parameters,	and	was	a	single	source	code	base	–	including	no	preprocessor	#ifdef’s.	This	is	one	of	the	
first	known	pure	OpenMP4	implementations	of	SpMV	and	SYMGS,	and	the	results	showed	good	
performance	on	the	GPU	relative	to	the	CPU.	
	
Slaven	Peles	(LLNL)	talked	about	strategies	being	deployed	in	several	solver	libraries	at	LLNL	(MFEM,	
SUNDIAL,	and	Hypre)	with	this	talk	focusing	on	SUNDIALS	(numerical	integrators	and	nonlinear	solvers).	
Because	these	libraries	often	interoperate	with	each	other,	they	are	being	treated	as	a	suite	that	will	be	

Agenda	/	Talks		

	

17	

ported	and	optimized	together.	Results	were	promising	for	GPUs	so	long	as	the	vectors	were	sufficiently	
large	to	overcome	transfer	costs	(>	10k	elements),	and	results	on	the	CPU	used	the	optimize	MLK	
libraries.	Next	steps	are	to	prototype	and	implement	basic	data	structures	(vector,	matrix)	
	

Session:	Experience	with	OpenMP	and	Recommendations	on	Guiding	Future	
Standards	
OpenMP	is	currently	the	one	open	standard	that	is	aimed	at	on-node	performance	portability.	A	
significant	update	to	OpenMP	version	4.5	was	announced	at	SC15,	which	largely	addressed	many	of	the	
criticisms	of	the	original	OpenMP4.0	standard	–	the	first	to	address	heterogeneous	computing.	Compilers	
are	starting	to	emerge	that	support	OMP4.x	for	GPU	offload.	This	session	was	aimed	at	collecting	some	
of	the	early	experience	with	this	important	standard.	
	
John	Pennycook	(Intel)	gave	a	pair	of	back-to-back	talks	to	open	this	session.	In	his	first	talk,	he	
reiterated	his	definition	of	performance	portability	(from	the	earlier	Intel	NDA	session),	which	is	that	“an	
application	is	performance	portable	if	it	achieves	a	consistent	level	of	performance	across	platforms,	
relative	to	the	best	known	implementation	on	each	platform”	–	with	an	emphasis	on	the	performance	
aspects.		A	main	thesis	of	his	talk	was	that	choosing	the	proper	abstractions	is	the	proper	way	to	design	
your	application,	not	to	simply	choose	a	portable	language	or	programming	model.	He	gave	several	
examples	where	it	was	difficult	to	portably	uncover	all	available	parallelism	in	a	kernel	through	
threading	and	SIMD	without	making	it	difficult	for	the	compiler.	He	used	the	concept	of	“parallel	kernels	
as	an	abstraction”	to	drive	home	the	point,	and	discussed	the	concept	of	elemental	functions	as	a	way	
to	bridge	the	gap	between	different	types	of	parallelism	–	namely	threads	and	SIMD.	
	
In	his	follow-on	talk,	Pennycook	discussed	ideas	for	a	Domain	Specific	Language	(DSL)	concept	that	uses	
a	YAML-based	input	specification	to	build	a	DAG	and	code	generation	tool	for	“rolling	updates”	to	
identify	dependencies	that	are	normally	difficult	and	error-prone	for	the	compiler	to	handle.	Codes	that	
had	multiple	loops/kernels	over	a	single	domain	with	known	dependencies	between	domain	elements	
were	used	in	most	of	the	examples.	CEA’s	Hydro2D	miniapp	was	used	to	present	some	promising	
results.	The	work	on	this	DSL	is	informing	some	suggested	additions	to	the	OpenMP	standard	to	extend	
the	task	syntax	to	specify	dependencies	between	iterations	of	different	loops.	Described	by	example	in	
his	talk,	they	include	new	keywords	pipeline,	intermediate,	and	depend.		
	
John	Levesque	(Cray)	talked	about	techniques	in	OpenMP	to	help	it	achieve	the	good	performance	of	
MPI	while	taking	advantage	of	the	dynamic	scheduling	of	OpenMP.	Multi-core	nodes	(KNL	in	particular)	
have	a	“sweet	spot”	for	the	number	of	MPI	tasks.	One	MPI	task	per	node	with	all	threads	is	not	ideal,	
because	of	NUMA	effects.	All-MPI	(one	task	per	core)	on	a	node	is	often	not	practical	because	of	strong	
scaling	(memory)	limits.	MPI	works	well	on	KNL	because	MPI	forces	locality.	He	then	presented	a	
number	of	techniques	to	use	OpenMP	effectively	on	KNL	by	having	large	parallel	regions,	forcing	locality	
in	the	threads	like	MPI	does,	and	avoiding	synchronization.	Regarding	performance	portability,	he	
suggested	that	mapping	those	threads	(which	each	contain	a	number	of	iterations)	to	CUDA	streams	
was	an	effective	approach	used	in	S3D.		
	
Carlo	Bertolli	(IBM)	talked	about	some	experiences	porting	the	LULESH	mini-app	to	an	early	version	of	
the	IBM	OpenMP4	compiler	and	comparing	the	results	to	an	optimized	CUDA	port.	The	initial	naïve	port	
showed	very	disappointing	results,	but	several	rounds	of	optimizations	(mostly	through	simple	changes	
to	the	OpenMP4	pragmas)	helped	greatly.	The	first	important	piece	was	to	fix	uncoalesced	accesses	by	

Agenda	/	Talks		

	

18	

changing	the	scheduling	to	schedule(static,1)	in	order	to	assign	successive	iterations	to	
successive	threads	within	the	same	block,	which	improved	performance	by	about	15x	over	the	naïve	
version.	Subsequent	optimizations	looked	at	compiler	improvements	to	perform	code	synthesis	and	
reduce	overheads	such	as	register	pressure.	Ultimately,	they	were	able	to	show	performance	of	
OpenMP4	pragmas	on	par	with	the	tuned	CUDA	port.	An	audience	question	asked	if	they	had	tried	the	
resulting	code	on	a	CPU,	which	they	had	not	yet	done	–	but	one	of	the	LULESH	maintainers	piped	in	that	
the	code	looked	very	much	like	the	OpenMP	code	generated	for	CPUs	and	should	work	well	there.	
	
Jeff	Larkin	(NVIDIA)	presented	a	good	description	of	prescriptive	vs.	descriptive	parallelism.	Prescriptive	
parallelism	implies	that	programmers	specify	details	to	help	the	compiler	optimize	for	a	particular	
architecture,	which	in	turn	can	hinder	the	performance	portability	of	an	application.	Descriptive	
parallelism	relies	more	on	the	compiler	taking	basic	information	about	the	program	and	deducing	the	
correct	parallelism	model	based	on	the	target	hardware.	In	OpenMP,	the	biggest	difficulty	in	successfully	
implementing	a	descriptive	approach	was	related	to	the	default	scheduling	and	whether	the	compiler	
could	properly	assume	loop	collapsing.	The	use	of	the	SIMD	pragma	was	suggested	as	a	possible	hint	
that	could	inform	the	compiler	of	the	correct	choice	for	GPUs.	He	concluded	by	encouraging	the	
community	to	adopt	a	descriptive	style	(with	prescription	only	as	necessary)	and	to	begin	developing	
best	practices	that	compilers	can	detect	and	optimize	for.	Some	follow-up	Q&A	from	the	audience	
discussed	issues	of	reproducibility,	and	knowing	exactly	what	the	compiler	chose	to	do.	Larkin	noted	
that	first,	you	can	tell	the	compiler	what	NOT	to	do	and	still	remain	descriptive,	and	that	compilers	and	
tools	must	be	enhanced	to	provide	sufficient	feedback	to	the	developer,	something	the	Cray	and	PGI	
compilers	do	a	pretty	good	job	at	already.	
	
David	Appelhans	(IBM)	discussed	some	work	being	performed	to	port	LLNL’s	Deterministic	Transport	
mini-app	Kripke	to	OpenMP4.	Kripke	is	defined	by	a	discretization	space	over	zones,	angles	(or	
directions),	and	energy	groups.	He	first	noted	that	a	batched	DGEMM	was	used	to	achieve	60%	of	GPU	
peak	on	solution	of	the	RHS	–	demonstrating	drop-in	optimized	library	technique.	Kripke	uses	a	diamond	
difference	sweep	in	many	of	its	kernels,	and	an	optimized	CUDA	version	was	used	as	a	baseline.	The	
results	of	the	OpenMP4	port	demonstrated	better	performance,	which	he	attributes	to	use	of	teams	to	
launch	a	large	number	of	thread	blocks	and	the	ability	for	OpenMP	to	easily	merge	new	data	structures	
and	updates	via	collapse.	(He	noted	that	with	sufficient	coding,	the	CUDA	version	could	match	or	beat	
the	OpenMP4	version,	but	the	resulting	code	would	be	difficult	to	maintain).	In	the	spirit	of	the	meeting,	
he	then	tested	this	GPU	version	on	the	CPU,	and	indeed	some	of	the	optimizations	for	the	GPU	hurt	the	
threaded	CPU	performance	relative	to	a	baseline	implementation.	Some	conditional	coding	(e.g.	to	
manually	hoist	loop	invariants)	helped,	but	further	work	is	needed	both	in	the	future	OpenMP	standard	
and	the	Kripke	implementation	to	find	a	truly	performance-portable	solution.	
	
Carlo	Bertolli	(IBM)	returned	to	build	on	the	theme	of	developing	performance	portable	OpenMP	code	
with	some	simple	examples,	and	some	suggestions	for	the	OpenMP	standard	to	allow	directives	that	
optimize	for	the	GPU	to	perform	well	on	the	CPU.	Specifically,	the	amount	of	parallelism	exposed	
through	directives	for	the	GPU	via	devices,	teams,	and	the	innermost	parallel	for	can	hinder	the	ability	
for	the	CPU	to	do	efficient	coarser	level	threading.	He	suggested	a	number	of	enhancements	that	could	
help	with	portability,	including	an	iterator	construct	over	devices,	a	well-defined	target	construct	when	
running	on	the	host	CPU,	an	“if-and-only-if	(iff)”	clause	that	would	trigger	GPU-specific	pragmas	only	if	
an	accelerator	existed,	and	improved	performance	of	collapsed	loops	(which	are	important	for	exposing	
sufficient	parallelism	for	the	GPU)	on	CPUs.	He	concluded	that	while	current	issues	exist	in	the	
OpenMP4.5	standard	to	enable	performance	portability,	early	results	are	highly	promising,	and	issues	
can	likely	be	addressed	in	the	standard	with	“minor	tweaks”.	

Agenda	/	Talks		

	

19	

	
Oscar	Hernandez	(ORNL)	gave	an	overview	of	work	being	performed	in	the	SPEC	HPG	on	best	practices	
they	have	learned	for	writing	a	series	of	16	SPEC	benchmarks	using	a	descriptive	(i.e.	non-prescriptive)	
approach	developed	at	an	OpenMP4.0	meeting	in	Berlin.	Their	guidelines	make	for	a	useful	start	at	
community	best	practices	for	OpenMP4	performance	portability,	and	are	clearly	outlined	in	his	talk.	In	
general,	the	recommendations	were	to	use	the	OpenMP	4	accelerator	model,	but	leave	much	of	the	
decisions	up	to	the	compiler	to	achieve	performance	portability.		
	
Tom	Scogland	(LLNL)	wrapped	up	the	session	with	a	discussion	of	progress	the	OpenMP	standards	are	
making	and	a	view	toward	the	OpenMP	5.0	specifications.	He	started	by	sharing	some	aspects	of	the	
OpenMP	4.x	standard	that	“surprised”	developers,	including	the	fact	that	all	code	to	be	run	on	the	GPU	
(regardless	of	where	it	sits	in	a	potentially	deep	call	stack)	must	be	decorated	with	the	declare
target	pragma,	and	future	work	to	alleviate	this	burden	by	automatically	detecting	functions	in	the	
same	translation	unit.	C++	codes	also	suffer	from	the	unavailability	of	virtual	functions	on	the	device,	
and	the	fact	that	STL	is	not	currently	supported	on	GPUs.	The	lack	of	a	deep	copy	construct	in	the	
current	standard	was	also	noted,	but	is	being	addressed	in	the	future	standard.	He	pointed	out	that	
many	challenges	to	performance	portability	with	OpenMP4	exist	(largely	because	–	as	noted	by	earlier	
speakers	–	optimizations	that	work	well	on	one	platform	can	hinder	performance	on	others),	and	that	
work	on	issues	such	as	platform/device	hints	are	being	addressed,	as	are	issues	specific	to	C++,	multi-
level	memory,	a	more	flexible	collapse,	and	a	series	of	others.			
	

Day	Three	

Session:	Tools	for	Performance	Portability	and	Analysis	
After	hearing	about	the	number	of	challenges	with	performance	portability	seen	by	developers	thus	far,	
this	session	focused	on	the	importance	of	good	tools	that	can	help	developers	reason	about	achieving	
good	performance	portability,	and	the	enduring	need	for	some	co-design	in	this	space.	

Jeanine	Cook	(SNL)	kicked	off	the	session	with	a	discussion	on	the	“Good,	Bad,	and	Ugly”	of	Performance	
Monitoring	Units,	or	PMUs.	The	good	being:	that	they	exist.	The	Bad	and	the	Ugly	being:	that	they	are	
totally	non-standardized	across	platforms,	and	documentation	is	spotty	and	often	inconsistent	with	
reality.	PAPI	presets	are	one	attempt	at	providing	a	standard	interface,	but	are	also	fraught	with	
potential	error	and	inconsistent	results	across	platforms.	She	described	a	new	tool	being	released	soon	
at	Sandia	called	perfminer	that	attempts	to	solve	this	problem	by	presenting	a	standardized	way	to	
collect	PMU	data	in	a	scalable	underlying	no-SQL	database,	and	present	the	data	using	visual	feedback	in	
a	Java-based	GUI.	It	uses	a	continuous	monitoring	approach	(i.e.	you	can	opt	in/out).	She	concluded	with	
a	plea	to	vendors	to	begin	movement	toward	a	more	standard	approach	to	collecting	PMU	data.	

Juan	Gonzalez	Garcia	(IBM)	discussed	a	prototype	tool	in	development	at	IBM	meant	to	capture	a	
system-wide	view	of	application	performance	by	integrating	profiling	techniques	for	CPU,	GPU	and	MPI	
–	and	understanding	the	interactions	amongst	those	hardware	subsystems.	The	tool	uses	modules	and	
interactions	to	collect	data	from	those	three	sources	in	a	MySQL	DB.		He	showed	some	early	results	
using	the	LULESH	mini-app	with	8	MPI	ranks,	1	CPU	and	1	GPU.	The	combined	results	are	displayed	in	a	
standard	profiling	report,	with	more	complex	and	visually	oriented	output	available	in	a	post-processing	
tool	that	queries	the	SQL	DB.		Future	work	is	to	integrate	more	profiling	sources	and	test	on	a	broader	
array	of	applications.	

Agenda	/	Talks		

	

20	

Ignacio	Laguna	(LLNL)	introduced	STATuner,	a	tool	that	uses	machine-learning	techniques	to	predict	the	
optimal	number	of	CUDA	blocks	and	block	size	for	a	kernel.	With	too	small	a	number	of	thread	blocks	
there	is	not	sufficient	parallelism	to	keep	the	GPU	busy,	and	if	the	block	size	is	too	large	there	is	too	
much	contention	for	resources.	After	a	brief	discussion	of	some	existing	tools	(NVIDIA’s	occupancy	
calculator	and	autotuning)	and	some	of	their	strengths	and	weaknesses,	he	motivated	the	reason	for	
building	STATuner	using	a	machine-learning	based	approach	based	upon	a	set	of	statically	determinable	
metrics	and	a	set	of	training	data.	Results	showed	better	prediction	of	performance	than	simple	
occupancy,	and	while	the	results	may	not	always	be	the	best	prediction,	the	error	is	bounded	by	a	
minimum.	

Si	Hammond	(SNL)	talked	about	the	motivation	and	design	for	KokkosP	–	a	performance	profiling	
interface	that	overcomes	many	issues	that	standard	tools	have	with	understanding	the	complex	
abstractions	that	Kokkos	employs,	and	provides	profiling	feedback	for	each	Kokkos	kernel	instantiation.	
KokkosP	is	currently	connected	to	several	tools,	including	VTune	and	Nsight,	and	more	are	on	the	way.	
The	design	includes	being	dynamically	loaded,	and	the	tools	are	stackable.	Use	of	KokkosP	comes	“for	
free”	for	codes	that	adopt	Kokkos,	and	additional	research	is	in	the	pipeline,	including	dynamic	feedback	
to	the	running	application,	debugging	connectors,	and	vectorization	and	instruction	analysis.	Some	
follow-up	Q&A	discussed	the	need	for	getting	teams	doing	some	similar	things	to	work	together	on	
standardizing	hooks.		

Protonu	Basu	(LBL)	opened	up	his	talk	with	an	example	using	miniGMG	where	a	baseline	of	13	lines	of	
code	exploded	into	170	lines	for	a	hand	optimized	CPU	version,	and	over	300	lines	for	a	GPU	optimized	
version.	This	motivated	their	work	on	using	CHiLL	to	perform	compiler-based	transformations	and	code	
generation.	The	results	he	presented	were	based	on	experiences	with	Geometric	Multi-grid	(in	the	form	
of	miniGMG),	using	a	variety	of	different	stencil	types.	Several	examples	were	provided	showing	how	
complier	transformations	could	reduce	memory	traffic	relative	to	computation	at	various	stencil	sizes.	
CUDA-CHiLL	was	briefly	discussed	as	a	thin	wrapper	on	top	of	CHiLL	to	directly	generate	CUDA	code.	In	
summary,	he	stressed	that	compiler	technology	should	not	be	overlooked	as	a	performance	portability	
tool	–	performance	results	can	rival	manually	tuned	code	for	well-understood	patterns.	

Heidi	Poxon	(Cray)	talked	about	tool	developed	by	Cray	called	Reveal	to	help	developers	through	the	
process	of	identifying	how	to	target	loops	for	parallelization.	She	started	by	motivating	why	you	would	
want	to	consider	OpenMP	–	namely	when	bottlenecks	from	MPI-everywhere	begin	contending	for	
shared	resources	or	network	injection	rates.	Once	the	decision	to	move	to	OpenMP	is	made	–	Reveal	
guides	the	user	through	a	series	of	steps:	1)	Identifying	key	high-level	loops	through	runtime	profiling	2)	
Performing	parallel	analysis	and	scoping	(with	dependence	analysis	included	in	the	tool)	3)	Adding	
OpenMP	parallelism	to	those	loops,	and	4)	Analyzing	performance	and	guiding	the	user	toward	
additional	optimizations	such	as	vectorization	of	inner	loops.		

Session:	The	Input/Output	Bottleneck	and	Use	of	Burst	Buffers	
While	much	of	this	meeting	focused	on	the	challenges	of	various	node	architectures,	burst	buffers	
represent	an	important	emerging	feature	of	new	architectures	to	use	multiple	levels	in	the	storage	
hierarchy	to	help	alleviate	the	I/O	bottleneck.	This	session	addressed	some	early	work	going	on	to	think	
about	how	to	portably	address	burst	buffers.		

Mark	Miller	(LLNL)	discussed	a	new	proxy	app	MACSio	developed	to	help	explore	parallel	I/O	models	and	
performance	in	a	flexible	plug-in	architecture.	MACSio	was	motivated	by	the	fact	that	many	existing	IO	

Agenda	/	Talks		

	

21	

benchmarks	tend	to	work	at	lower	levels	of	abstraction	than	some	of	our	sophisticated	applications	that	
use	abstractions	such	as	HDF5,	Silo,	Exodus,	or	ITAPS.	MACSio	allows	the	user	to	set	up	a	representative	
data	set	using	a	simple	JSON	format	that	best	mimics	the	output	(i.e.	restart	or	plot)	characteristics	of	
the	application.	Field	data	can	be	initialized	with	realistic	data	fields	so	that	tests	such	as	compression	
techniques	are	not	stymied	by	data	initialized	as	constant	or	random	data.	The	back-end	plugins	allow	
different	I/O	models	(e.g.	file-per-processor,	collective	writes,	or	multiple	independent	files)	to	be	
tested.	Early	results	motivated	some	work	with	the	HDF5group	to	work	on	some	peak	memory	issues	
uncovered	in	recent	HDF5	releases.	He	concluded	with	a	pointer	to	the	github	site	and	a	request	for	
interest	in	contributing	additional	plug-ins.	

Andrey	Ovsyannikov	(LBL)	began	his	talk	with	a	motivation	for	why	burst	buffers	are	an	important	
emerging	innovation,	using	a	workflow	consisting	of	ChomboCrunch	and	VisIt	to	motivate	the	data	
analytics	needs	in	the	context	of	Carbon	Capture	and	Sequestration	simulations.	After	showing	how	the	
burst	buffers	were	enabled	in	a	SLURM	script,	he	presented	results	of	an	I/O	bandwidth	study	of	the	
burst	buffer	versus	straight	lustre,	showing	a	consistent	3-5x	improvement	in	bandwidth	using	the	burst	
buffer.	He	then	showed	results	of	a	straight	time	history	analysis,	with	clear	spikes	in	the	runtime	when	
the	lustre	version	performed	I/O	compared	to	the	relatively	non-existent	overhead	using	the	burst	
buffer.	These	early	results	were	promising,	and	he	concluded	with	some	planned	future	work	including	
dynamic	component	load	balancing,	managing	burst	buffer	capacity,	component	signaling,	and	including	
additional	components	into	workflow	(e.g.	pore	graph	extractor).	

Kathryn	Mohror	and	Mike	Pozulp	(LLNL)	concluded	the	session	with	a	description	of	the	Scalable	
Checkpoint	Restart	(SCR)	library	and	some	application	results.	Kathryn	began	the	talk	with	an	overview	
of	SCR,	and	their	plans	to	expand	from	its	initial	approach	of	providing	resilient	checkpointing	to	
abstracting	away	the	complexities	of	using	the	burst	buffer.	Mike	picked	up	the	talk	from	there	with	a	
description	of	how	SCR	was	used	in	some	early	science	runs	on	Trinity	Phase	I.	His	first	result	showed	
how	SCR	using	RAMDISK	held	time	spent	checkpoint	almost	flat	as	the	number	of	nodes	increased	from	
1	to	4096,	with	the	time	spent	doing	traditional	Lustre	I/O	increasing	exponentially.	He	then	presented	
time	history	results	for	an	1152	processor	run	showing	the	Lustre	vs.	SCR	RAMDISK	consistently	showing	
about	a	20x	performance	improvement	in	checkpoints.	He	concluded	with	a	brief	description	of	the	ease	
of	which	integrating	SCR	into	Mercury	was,	and	future	plans	to	replicate	the	results	using	the	NVRAM	
burst	buffers	on	Trinity	with	SCR	when	the	capability	comes	available.	

Session:	Use	of	Domain-Specific	Languages	for	Performance	Portability		

The	final	session	presented	a	few	talks	on	successful	examples	of	the	use	of	Domain	Specific	Languages	
to	support	performance	portability.		

David	Richards	(LLNL)	talked	about	work	that	came	out	of	the	X-stack	D-TEC	project	to	use	the	ROSE	
compiler	on	high	order	stencils	to	generate	optimized	code	that	is	then	passed	on	to	the	vendor	
compiler.		He	started	with	some	examples	from	the	Cardiod	heart	modeling	application,	where	he	got	
good	results	on	the	GPU	(66%	of	the	roofline	peak).	But	he	spent	most	of	his	time	talking	about	the	SW4	
seismic	code.	Some	of	the	lessons	learned	had	to	do	with	converting	some	of	the	Fortran	to	C,	in	which	
case	a	fair	bit	of	performance	was	lost	due	to	missed	vectorization	opportunities.	While	the	C	could	be	
made	to	match	the	Fortran	performance,	the	native	Fortran	was	much	easier	for	the	compiler	with	the	
naïve	implementation.	The	GPU	work	on	SW4	was	more	complicated,	and	performance	was	limited	by	
register	pressure.	While	tiling	is	the	typical	approach,	they	instead	used	loop	fission	–	splitting	the	

		

	

22	

complex	kernel	into	a	number	of	smaller	kernels.	Performance	on	the	GPU	was	good,	but	still	only	about	
15%	of	the	roofline	bound.	Overall,	the	DSL	for	stencils	demonstrated	very	promising	results	–	allowing	
the	user	to	write	simple	“MatLab”	type	code,	and	the	D-TEC	ROSE	transformations	taking	care	of	
handing	the	backend	compiler	more	optimized	code.	

Brian	Van	Straalen	(LBL)	wrapped	up	the	session	with	a	discussion	of	AMRStencil	–	a	DSL	embedded	in	
C++11.	It	is	being	used	in	a	rewrite	of	Chombo	–	replacing	the	original	Fortran	kernels	with	the	eDSL.	The	
default	version	works	with	C++11,	and	the	use	of	ROSE	allows	for	some	additional	optional	cross-
platform	optimizations.	AMRStencil	tries	to	be	very	clear	about	what	is	compile-time	vs.	runtime	
bindable	–	Stencils	are	compile-time,	while	Boxes	are	runtime.	He	showed	some	example	results	with	
Geometric	multigrid,	demonstrating	the	expressiveness	of	the	compact	source	code.	Performance	
results	on	an	AMR	shift	calculation	demonstrated	very	good	results	on	a	Haswell	processor	with	SIMD.	
He	touched	on	how	the	ROSE	tool	can	be	used	to	manage	the	memory	hierarchy	–	turning	a	few	tens	of	
lines	of	code	into	almost	1000	lines	of	highly	optimized	tiled	code.	He	concluded	with	a	list	of	current	
challenges	–	including	some	complexities	with	the	C++	language.	

Breakout	Discussions	
	
Perhaps	the	most	useful	aspect	of	this	meeting	was	the	chance	to	get	people	talking	during	the	breakout	
sessions.	These	sessions	were	designed	to	cover	topics	for	which	an	earlier	session	of	talks	had	
completed	so	as	to	give	participants	a	basis	on	which	to	form	their	discussions.	Each	topic	area	had	two	
independent	groups	meeting	in	parallel	–	both	to	keep	the	number	of	people	involved	in	each	discussion	
manageable,	and	to	ensure	that	a	diversity	of	ideas	were	brought	out	between	the	two	groups.	
Breakout	leads	were	asked	to	moderate	the	discussion,	provide	an	outbrief,	and	summarize	the	content	
in	this	report.	In	general,	the	breakout	leads	coordinated	beforehand	to	formulate	a	common	set	of	
questions	for	the	overlapping	breakouts.	Their	original	outbriefs	in	their	raw	form	are	available	on	the	
meeting	web	site.	Below	is	a	summary	of	their	discussions.	
	
Note:	We’ve	included	in	each	section	below	notes	that	were	collected	by	Tina	Macaluso	and	Emily	
Simpson	during	the	short	outbriefs	of	the	breakout	sessions	(out-brief	presentations	are	available	on	the	
meeting	web	site),	in	addition	to	the	write-up	summaries	provided	by	the	session	leads.	Thanks	to	Tina	
and	Emily	for	their	incredible	efforts	–	without	which	so	much	information	would	be	lost	forever!	
	

Breakout	Session	A:	Managing	the	Memory	Hierarchy		

Lead:	Doug	Doerfler	(LBNL)	
	
The	session	had	a	number	of	participants,	with	active	participation	from	LLNL,	LBNL,	Sandia,	LANL,	
Nvidia	and	Cray.	The	breakout	charge	questions	developed	for	the	session	were	used	to	lead	the	
discussion:	

• What	are	the	practical	limitations	of	using	current	programming	models	for	managing	the	
memory	hierarchy	

o Do	you	plan	to	integrate	multi-level	memory	support	into	your	code?	
o What	are	your	memory	capacity	requirements	in	the	2020	timeframe?	

Breakout	Discussions		

	

23	

o Can	you	live	with	16,	32,	64	GB	per	node?	Per	NUMA	domain?	
o How	much	effort	are	you	willing	to	do	to	support	multi-level	memory?		

• Languages,	directives,	attributes,	other?	
o Are	you	willing	to	use	a	“non-standard”	memory	management	programing	model?	
o Do	you	need	memory	management	interoperability	of	C,	C++	and	Fortran	in	a	common	

code?	
o Would	you	like	to	see	a	type	attribute	for	variables	to	declare	fast	memory	storage?	

• What	is	the	proper	balance	between	user	control	and	runtime	control	for	memory	placement	
and	management?	

	
The	discussion	started	off	by	setting	some	boundary	conditions	on	what	constitutes	the	memory	
hierarchy:	a)	on	package	memory	(MCDRAM,	HBM),	b)	off	package,	bulk	capacity	memory	(DDR)	and	c)	
byte	addressable	non-volatile	memory	(upcoming	NV	technologies).	There	was	some	discussion	if	in	the	
future	high-bandwidth,	on-package	memory	alone	would	satisfy	application	needs	for	capacity,	but	it	
was	the	consensus	of	the	group	that	developers	will	have	to	deal	with	a	multi-level	memory	hierarchy,	
as	it	will	be	necessary	to	satisfy	adequate	Byte/FLOP	balance	ratios.	
	
The	group	discussed	the	practical	limitations	of	current	programming	models	and	identified	the	desired	
features	of	future	models.	The	group	identified	that	developers	want	control	at	a	low	level	and	current	
library-based	solutions	provide	that,	but	these	solutions	assume	that	data	allocations	are	static	where	as	
in	reality	codes	go	through	multiple	phases	and	you	want	data	storage	and	attributes	to	be	dynamic.	
Developers	want	to	be	able	to	describe	the	attributes	and	have	introspection	of	the	node	to	help	
manage	data	placement,	some	combination	of	compiler	and	runtime	support.	The	group	also	discussed	
the	merits	of	higher	level,	higher	productivity	solutions	but	did	not	reach	a	consensus	of	what	that	
would	be,	CHAI,	UVM,	OpenMP,	etc.?	
	
We	identified	a	need	for	variable	type	attribute	extensions	to	specify	the	characteristics	of	memory.	
Attributes,	as	opposed	to	declarations,	allow	type	characteristics	to	propagate	through	the	system.	
However,	there	was	some	disagreement	that	a	declarative	statement	is	sufficient	and	there	was	some	
argument	that	the	extra	semantics	would	help	in	using	a	data	structure	with	this	information.	This	is	a	
language	issue	and	is	applicable	to	Fortran	and	C/C++.	The	group	also	expressed	concern	on	the	amount	
of	time	it	would	take	to	get	through	a	language	committee.	
	
Enhanced	tools	were	identified	as	a	desirable	means	to	identify	data	structures	that	would	benefit	most	
from	“fast”	memory.	For	example	identify	hotspots	for	memory	accesses	and	identify	if	it’s	latency	or	
bandwidth	bound.		
	
Action	Items	

• Cray	agreed	to	explore	language	attribute	features	in	compilers	(point	of	contact	Luis	De	Rose).	
• It	was	recommended	that	the	DOE	COE’s	conduct	tutorials	for	tools	available	today.	Cray	and	

Nvidia	identified	to	support	a	future	tutorial,	but	all	the	COE	vendors	should	participate.	
	

Outbrief	notes	(Doerfler	–	Managing	the	Memory	Hierarchy):	
• Both	discussion	groups	answered	the	same	breakout	charge	questions.		What	are	practical	

limitations	of	package	memory	for	managing	the	memory	hierarchy?		What	are	ramifications	for	
language	directives,	attributes,	etc.?		What	is	the	proper	balance	for	user	control?		I	began	the	

Breakout	Discussions		

	

24	

discussion	by	setting	some	boundary	conditions:	managing	on	package	memory	(MCDRAM,	HBM),	
off-package,	bulk	capacity	(DDR)	and	byte	addressable	non-volatile	memory	(and	we	did	not	really	
get	to	this	last	discussion).		A	quick	survey	of	participants	revealed	a	quarter	of	the	group	members	
were	app	developers	who	are	actively	incorporating	multi-level	memory	(MLM)	into	their	code,	
another	quarter	said	they	would	do	so	in	the	near	future;	half	of	the	attendees	were	not	app	
developers.	

• Are	we	sure	we	need	MLM	concepts	in	next	generation	machines?		There	was	no	indication	that	we	
can	avoid	MLM	in	future	machines.		There	was	skepticism	that	on-package	memory	only	can	satisfy	
adequate	Byte/FLOP	balance	ratios.		

• What’s	wrong	with	memkind?		It	assumes	that	where	data	resides	is	static	but	real	codes	go	through	
multiple	phases,	so	you	want	to	dynamically	change	data	attributes.		The	memkind	solution	is	
completely	developer-managed.		The	group	was	not	sure	why	one	would	want	a	library-based	
solution	–	but	they	still	want	a	way	for	developers	to	work	at	this	low-level.		What	developers	really	
want	is	to	be	able	to	describe	the	attributes	of	data	at	the	language	level	and	have	introspection	of	
the	node	to	help	manage	data	placement,	i.e.	some	combination	of	the	compiler	and	a	“runtime”	to	
help	manage	the	data.		The	sense	was	there	is	also	need	for	a	higher-level,	higher	productivity	
solution:	CHAI?	UVM?	OpenMP?	

• There	is	desire	and	a	need	for	variable	type	attribute	extensions	to	specify	“memory	
characteristics”.		Instead	of	an	attribute	that	fast	memory	is	needed	for	a	given	data	structure,	
consider	saying	when	fast	memory	is	not	needed.		The	attribute	needs	to	be	broader	than	fast	or	
slow	and	capture	other	characteristics	such	as	latency.		Cray	has	agreed	to	explore	this	notion	and	
solicited	input	from	participants	during	the	discussion.		This	is	not	a	specific	language	issue	–	it	
needs	to	be	addressed	across	languages.		Attendees	said	they	would	appreciate	not	just	a	
programming	model	but	also	a	tool	to	tell	us	what	data	structures	would	benefit	most	from	various	
types	of	memory.		There	was	agreement	that	a	proper	balance	is	needed	between	user	control	and	
memory	management.	

Question	–	Would	attributes	for	memory	be	static?	
• No	they	would	likely	be	dynamic	via	the	runtime.	
	

Breakout	Session	B:	Managing	the	Memory	Hierarchy	

Lead:	Bronson	Messer	(ORNL)	
	
This	breakout	session	included	participants	from	ORNL,	LBNL,	LLNL,	LANL,	IBM,	and	Intel.	The	discussion	
began	with	a	series	of	somewhat	specific	questions	regarding	the	methods	the	participants	were	
currently	using	(or	considering)	to	manage	hierarchical	memories	and	how	they	saw	those	techniques	
changing	as	hierarchies	become	deeper	on	the	CORAL	platforms	and	beyond.		The	overarching	question	
was:	What	are	the	practical	limitations	of	using	current	programming	models	for	managing	the	memory	
hierarchy?	In	particular,	the	breakout	discussed:	
	
• Do	you	plan	to	integrate	multilevel	memory	support	into	your	code?	

Breakout	Discussions		

	

25	

• What	are	your	memory	capacity	requirements	in	the	2020	timeframe?	(Can	you	live	with	16,	32,	64	
GB	per	node?	Per	NUMA	domain?)		

• How	much	effort	are	you	willing	to	expend	to	support	multilevel	memory?		
• Are	you	willing	to	use	a	“non-standard”	memory-management	programing	model?	
• Do	you	need	memory-management	interoperability	of	C,	C++,	and	Fortran	in	a	common	code?	
• Would	you	like	to	see	a	type	attribute	for	variables	to	declare	fast	memory	storage?									
	
Current	practices	and	expectations	
	
There	was	a	strong	consensus	that	managing	the	memory	hierarchy	was	a	common	requirement.	Many	
application	developers	in	the	session	reported	a	need	to	manage	memory	hierarchies	on	current	
machines.	Electronic	structure,	lattice	QCD,	deterministic	transport,	other	multi-physics	codes	were	
given	as	examples	of	codes	that	will	not	fit	into	small,	fast	memories,	necessitating	memory	
management.	Indeed,	several	participants	reported	that	they	often	manage	memory	themselves,	in	
some	cases	writing	their	own	memory	management	software	to	accomplish	this	(see	comments	later	
regarding	the	question	of	whether	this	is	a	desirable	state	of	affairs).	For	codes	that	need	some	sort	of	
explicit	control,	one	possibility	is	to	use	high-bandwidth	memory	as	a	cache,	but	managing	that	cache	
explicitly	as	a	user	seems	daunting.	MPI-3	shared	memory	programming	was	offered	as	an	example	of	a	
development	that	was	envisioned	as	a	method	to	reduce	complexity	(by	allowing	changes	to	existing	
MPI	codes	incrementally	in	order	to	accelerate	communication	between	processes	on	the	shared-
memory	nodes)	that	can	actually	result	in	increased	effort	on	the	part	of	the	programmer	(i.e.	using	
MPI-SHM	can	lead	directly	to	writing	a	handmade	memory	manager).	
		
Questions	regarding	memory	footprint	need	a	normalization	to	be	truly	meaningful,	e.g.	bytes/peak	
TFLOP	or	memory-size/memory-bandwidth.	Nevertheless,	for	many	codes,	there	is	a	minimum	amount	
of	memory	required	per	MPI	rank	to	make	the	MPI+X	model	feasible.		
	
In	discussion	of	memory	management,	it	is	important	to	separate	the	distinct,	but	related,	issues	of	data	
placement	and	data	layout.	Data	placement	refers	to	the	physical	memory	location	where	a	piece	of	
data	is	housed.	Data	layout	refers	to	how	a	program	traverses	data	structures	(e.g.	for	example,	is	the	
data	laid	out	as	a	structure	of	arrays	or	a	array	of	structures?).	For	each	of	these	related	issues,	the	
implementation	of	a	truly	shared	address	space—where	the	system	“finds”	the	data	for	you—opens	up	
several	possibilities	for	tools	and	finer	user	control.	
	
In	discussing	possible	remedies	for	many	of	these	issues,	libraries	and	consistent	API’s	were	
overwhelmingly	preferred	to	directives	by	the	breakout	participants.	Portability	was	cited	as	the	primary	
driver	for	this	choice,	as	libraries	are	not	directly	dependent	on	individual	compiler	support.	Though	not	
desirable,	this	strategy	allows	an	extreme	solution:	If	required,	individual	libraries	can	be	packaged	with	
the	code.	Nevertheless,	it	is	important	to	note	that	directives	can	be	used	and	“hidden”	from	
noncompliant	compilers	with	macros.	Waiting	for	language	standards	to	take	hold	was	not	considered	
part	of	a	realistic	strategy	for	the	future,	as	time	is	short.		Indeed,	though	memory	management	is	a	
current	concern	already,	it	may	be	premature	to	designate	features	for	standards.	Guidance	from	
vendors	to	determine	the	scale	of	the	gap	between	what	is	possible	and	what	is	desired	would	be	
helpful	here.	Understanding	that	the	vendors	have	to	optimize	over	finite	development	resources	to	
effectively	answer	the	question,	a	concise	list	of	guaranteed	features	would	be	of	significant	benefit.		
	
User	control	vs.	runtime	control	
	

Breakout	Discussions		

	

26	

Finally,	the	breakout	participants	discussed	the	proper	balance	between	user	control	and	runtime	
control	for	memory	placement	and	management.	There	was	a	strong	consensus	for	a	combination	of	
reasonable	defaults	and	the	possibility	of	fine	control.	Total	runtime	control	connotes	a	level	of	
opaqueness,	which	can	lead	to	performance	problems.	Participants	noted	this	sort	of	opacity	is	already	
a	problem	in,	e.g.,	PGAS	languages.	In	particular,	page	faults	or	allocations	exceeding	device	memory	
need	to	be	discoverable	by	developers.	The	most	robust	and	safest	mechanism	for	discovery	would	be	
stopping	program	execution.		
	
Nevertheless,	a	balance	is	desired,	especially	when	development	is	beginning.	If	developers	have	to	
confront	the	full	complexity	to	get	started,	that	is	a	problem.			
The	experience	of	developers	with	the	Cell	processor	was	suggested	as	a	lesson	learned	in	this	respect.	
With	the	Cell,	developers	had	to	learn	essentially	all	the	details	of	the	hardware	before	productive	
software	work	could	begin.		Tool	developers	will	need	to	determine	a	set	of	abstractions	to	provide	
information	between	the	robust	program	failure	mode	and	hardware-level	details	of	paging.	Ideally,	
these	abstractions	will	be	the	same	as	those	under	user	control.		
		
Two	closing	thoughts	from	the	session	relate	to	what	might	be	considered	legacy	code	issues.	First,	we	
often	talk	about	“memory	management”	when	we,	in	fact,	mean	“dynamic	memory	management.”	This	
is	a	limiting	assumption.	We	should	also	consider	static	memory	and	how	the	runtime	will	manage	it,	
particularly	thread-static	memory.			
		
Finally,	all	participants	agreed	that	intransigent	adherence	to	outdated	implementations	in	legacy	codes	
renders	most	of	this	discussion	moot.	If	a	developer	insists	on	maintaining	major	parts	of	a	code	frozen	
in	time,	they	have	to	accept	that	new	capabilities	and	hardware	features	may	well	be	beyond	the	reach	
of	the	code	to	exploit	(e.g.	the	use	of	Fortran	COMMON	blocks	and	the	standards	constraint	this	
introduces	is	an	especially	stark	example).	

Outbrief	notes	(Messer	–	Managing	the	Memory	Hierarchy):	
• What	we	discussed	in	our	breakout	group	validates	what	Doug	just	presented.		One	thing	that	was	

pointed	out	in	our	discussion	is	we	don’t	really	know	what	we	need	now.		There	was	consensus	that	
many	users	have	identified	needs	for	memory	management	(electronic	structure,	QCD,	
deterministic	transport,	other	multiphysics	codes).		Memory	footprint	needs	some	form	of	
normalization	to	be	meaningful,	e.g.	bytes/peak	TFLOP	or	size/bandwidth.		The	group	discussed	the	
reality	that	for	many	codes	there	is	a	minimum	amount	of	memory	required	per	MPI	rank,	and	this	
is	not	going	to	change.	

• The	group	agreed	that	“COE	Platforms”	(SC	ASCR	2018-era	platforms	at	NERSC,	OLCF	and	ALCF	and	
ASC	platforms	at	LLNL	and	LANL	around	same	time)	will	have	hardware	features	that	smaller	
platforms	will	not	share	(e.g.	Linux	clusters	with	older	GPUs).		It	remains	to	be	seen	whether	we	will	
have	to	design	to	the	lowest	common	denominator.		One	possibility	is	to	use	HBM	as	a	cache	but	
managing	that	cache	explicitly	-	as	a	user	-	seems	daunting.		MPI	SMH	provides	a	picture	of	how	bad	
things	can	be	and	can	lead	to	the	need	to	hand-write	a	memory	manager.	

• The	notion	of	true	shared	address	space	–	where	the	system	“finds”	the	data	for	you	–	opens	up	
possibilities	for	tools	and	finer	user	control.		The	group	agreed	it	is	important	to	separate	the	
distinct	-	but	related	-	issues	of	data	placement	and	data	layout.		Data	placement	is	physical	memory	

Breakout	Discussions		

	

27	

location	whereas	data	layout	is	about	how	the	user	lays	out	arrays,	manipulates	the	data	structure,	
and	in	which	order	the	process	is	traversed.	

• Libraries	and	consistent	APIs	were	preferred	to	directives	by	members	of	our	group.		Portability	is	
the	prime	driver	here.		You	can	package	a	library	with	the	code	and	importantly,	you	can	hide	
directives	with	macros.		This	is	more	of	a	compiler	support	issue.	

• Wrapping	platform-dependent	allocation	and	placement	methods	is	already	common	(and	was	not	
seen	as	a	big	deal	but	also	not	seen	as	the	ideal	solution).		We	need	vendor	guidance	to	determine	
the	scale	of	the	gap	we	need	to	bridge	between	what	is	possible	and	what	is	desired.		The	vendors	
have	to	optimize	over	finite	development	resources.	

• Some	group	members	argued	that	“balance”	is	the	wrong	word	–	what	is	needed	is	a	set	of	sensible	
defaults	and	a	way	to	exert	control	when	you	want	to.		There	was	agreement	that	there	are	always	
tradeoffs	between	absolute	performance,	maintainability,	resources	and	portability.	

• Opaqueness	for	performance	is	a	huge	potential	problem	and	already	a	problem	today	for	PGAS.		
Getting	detailed	information	in	a	timely	and	effective	manner	is	important.	

• Page	faults	or	allocations	exceeding	device	memory	need	to	be	able	to	be	seen,	even	to	the	point	of	
stopping	program	execution.		If	people	have	to	confront	full	complexity	in	order	to	get	started	then	
that	is	a	problem.	

• Finally,	we	often	talk	about	memory	management	and	mean	dynamic	memory	management,	and	
that	is	a	big	assumption.		We	should	also	discuss	static	memory	and	how	the	runtime	will	manage	it,	
particularly	thread-static.	

	

Session	C:	Performance	Portable	Abstractions	

Lead:	David	Beckingsale	(LLNL)	

The	goal	of	this	breakout	session	was	to	understand	and	answer	questions	about	the	programming	
systems	required	for	writing	performance	portable	applications.	The	session	was	attended	by	around	15	
participants,	including	vendor	representatives,	and	national	laboratory	members.	The	session	focused	
around	5	questions:		
	

1. What	is	performance	portability?		
2. At	what	level(s)	do	we	want	abstractions?		
3. What	are	the	tradeoffs	of	different	approaches?		
4. What	do	we	need	from:	Vendors	and	the	community?		
5. What	do	we	want	to	see	supported	by	our	programs?		

	
Our	discussion	surrounding	each	of	these	items	is	summarized	below.	
	

What	is	performance	portability?	
In	one	of	the	workshop	presentations,	John	Pennycook	(Intel)	volunteered	the	following	definition	for	
performance	portability:	"An	application	is	performance	portable	if	it	achieves	a	consistent	level	of	
performance	across	platforms,	relative	to	the	best	known	implementation	on	each	platform."	This	
definition	caused	considerable	discussion	during	the	talk,	and	a	similar	level	of	discussion	during	the	

Breakout	Discussions		

	

28	

breakout	session.	Whilst	we	agreed	to	use	the	definition	as	a	point	of	reference	for	the	remainder	of	the	
breakout,	some	additional	qualifiers	were	added	to	ensure	it	was	more	applicable	to	the	needs	of	
national	laboratory	applications.	A	key	point	for	a	performance	portable	application	was	that	a	certain	
fraction	of	the	codebase	be	shared	between	implementations,	although	the	fraction	of	shared	code	
could	limit	the	performance	that	can	be	achieved.	An	additional	qualifier	was	that	the	implementation	
should	aim	to	exploit	available	architectural	features.	The	original	definition	leaves	some	parameters	
unspecified,	such	as	the	level	of	performance	the	application	achieves.	It	was	noted	that	this	level	of	
performance	need	not	be	high	for	an	application	to	be	considered	performance	portable.		

At	what	level	do	we	want	performance	portable	abstractions?	
There	are	many	levels	at	which	performance	portable	abstractions	can	be	provided.	This	question	
captured	two	different	interpretations	that	were	discussed	at	the	breakout.	For	an	application	
developer,	the	ideal	level	for	an	abstraction	could	be	the	library	level.	If	the	application	requires	a	matrix	
to	be	solved,	they	could	call	the	appropriate	library	that	would	then	contain	high-performance	code	
targeted	specifically	to	the	platform	the	application	is	running	on.	For	an	application	developer,	using	a	
different	library	depending	on	the	architecture	they	are	using	is	not	a	problem.	However,	this	would	
require	high-performance	libraries	to	be	implemented.	It	was	noted	that	the	abstraction	of	functionality	
in	a	library	is	already	abstracted	out	frequently	in	the	case	of	MPI.	
	
For	the	computer	scientist,	rather	than	the	application	scientist,	having	abstractions	at	the	lowest	
possible	level	was	preferred.	These	low-level	abstractions	should	still	exhibit	some	degree	of	portability,	
as	this	increases	developer	productivity	and	minimizes	the	amount	of	functionality	that	has	to	be	
rewritten	on	a	per-architecture	basis.	This	comment	means	that	DSLs	might	not	be	appropriate	here,	
but	could	work	for	other	use	cases.	Specifically,	a	DSL	used	to	develop	a	new	application	could	allow	the	
computational	scientist	to	focus	on	the	science,	and	the	computer	science	to	focus	on	the	optimized	
implementation	of	the	operations	exposed	by	the	DSL.	
	
When	adding	abstractions	to	legacy	applications	it	is	important	that	they	can	be	adopted	incrementally,	
since	replacing	everything	in	the	code	all	at	once	is	impossible.	Whilst	most	of	the	discussion	focused	on	
C++,	it	was	noted	that	there	seem	to	be	a	lack	of	these	performance	portable	approaches	for	Fortran.	

What	are	the	tradeoffs	of	different	approaches?	
Each	approach	for	performance	portable	abstractions	has	different	pros	and	cons.	DSLs	provide	the	
opportunity	for	lots	of	optimizations	(e.g.	kernel	fusion)	and	can	be	highly	tuned	for	a	specific	
application.	However,	they	cannot	be	incrementally	adopted.	One	success	story	was	using	a	DSL	to	
generated	optimized	Fortran	code	from	Python.	C++	abstractions	like	RAJA	and	Kokkos	are	good	at	
allowing	users	to	rapidly	prototype	new	versions	and	optimizations,	but	by	using	cutting	edge	language	
features	(e.g.	C++	lambda	functions),	these	abstractions	are	at	the	mercy	of	compiler	support.	One	
solution	to	this	would	be	to	push	language	standards	to	include	parallelism	support.	However,	this	
would	bloat	an	already	large	standard	and	create	more	work	for	complier	vendors.	It	was	clear	that	each	
abstraction	would	be	better	suited	to	a	different	user	community	and	that	successful	applications	
tended	to	have	three	stakeholders:	domain	scientist,	computer	scientist,	and	implementers.	

What	do	we	need	from	vendors	and	the	community?	
Improved	compiler	support	was	a	key	issue	that	the	breakout	attendees	felt	needed	to	be	addressed	by	
the	vendors.	Both	in	terms	of	supporting	modern	programming	language	standards,	but	also	in	ensuring	
that	code	could	be	optimized	effectively	when	using	performance	portable	abstractions.	In	addition	to	
compiler	support,	it	was	noted	that	tool	support	for	our	chosen	abstractions	was	critical.	For	example,	

Breakout	Discussions		

	

29	

debuggers	that	could	understand	the	abstraction	and	provide	meaningful	information	when	finding	and	
fixing	application	bugs.	
	
One	important	point	raised	was	that	ensuring	that	different	abstractions	can	co-exist	is	critical.	For	
example,	if	one	part	of	an	application	uses	one	abstraction,	but	calls	a	library	that	uses	another,	the	two	
abstractions	must	be	able	to	work	together	to	ensure	correctness	and	performance.		
	
A	final	area	that	would	benefit	from	improved	support	is	build	systems.	Programming	models	like	CUDA	
require	separate	compilers	and	can	be	difficult	to	combine	with	others	libraries	and	existing	application	
build	systems.	Applications	will	be	run	on	desktops	as	well	as	supercomputers,	so	need	to	be	built	in	
both	places.	

What	do	we	to	see	supported	by	the	programs?	
Program	support	should	focus	on	system	software	such	as	the	compilers,	and	breakout	attendees	
stressed	the	value	of	programs	supporting	software	that	wasn't	applications.	Finally,	to	help	ensure	
applications	are	ready	for	the	next-generation	systems,	it	would	be	good	to	have	more	expertise	on	the	
available	performance	portable	abstractions,	perhaps	in	the	form	of	evangelization	experts	who	can	visit	
application	teams	and	share	knowledge	and	teach	application	developers.	
	

Outbrief	notes	(performance	portable	abstractions	–	Beckingsale):	
• We	started	discussion	with	John	Pennycook’s	definition	of	performance	portability	(i.e.	an	app	is	

performance	portable	if	it	achieves	a	consistent	level	of	performance)	and	added	some	qualifiers	
including	X%	of	the	code	must	be	shared	between	implementations	(e.g.	95%),	and	the	
implementation	must	exploit	available	architecture	features.	

• App	developers	can	use	library-level	abstractions.		There	was	a	recommendation	to	leave	the	
problem	of	performance	to	the	library	developer.		One	library	per	architecture	is	no	big	deal.	

• Developers	want	abstractions	as	low-level	as	possible	while	remaining	portable.		Legacy	apps	
require	incremental	adoption.	Fortran	cannot	be	ignored	–	but	what	can	we	do?		Pre-processing,	
RAJA/Kokkos	interoperability	with	Fortran,	f2c.	

• Tradeoffs?		DSLs	provide	opportunity	for	kernel	fusion	but	inhibit	incremental	adoption.		IRP	DSL	is	a	
success	story	of	generating	optimized	Fortran	from	Python.		RAJA/Kokkos	is	great	for	rapidly	
prototyping	optimizations.		Abstractions	using	cutting	edge	features	are	at	the	mercy	of	compilers.		
The	push	to	add	parallelism	to	language	standards	makes	them	more	bloated	(and	this	adds	more	
work	for	compiler	developers).	

• What	do	we	need	from	the	vendors?		Focus	on	compilers,	meaning	support	standards	and	optimize	
code	even	through	our	chosen	abstractions.		Provide	tools	that	support	our	chosen	abstractions	
(e.g.	debug	information)	and	better	build	systems	because	it	is	difficult	to	combine	wrappers,	
preprocessors	and	compilers.	

• What	do	we	want	to	see	the	programs	support?		Explicit	support	targeting	system	software	(e.g.	
compiler	research).		Have	experts	who	know	application	abstractions	well	spread	their	expertise	via	
visits	to	app	teams	to	share	knowledge.	

Comment	–	Having	DOE	fund	some	of	the	things	that	everyone	uses	directly	(versus	having	the	labs	fund	
this	work)	would	be	helpful.	
Comment	–	There	are	efforts	by	several	compilers	via	a	“Link-time”	technique.	

Breakout	Discussions		

	

30	

• Link-time	optimization	does	work	in	some	cases.			
Comment	–	It	would	be	helpful	if	we	could	put	our	own	work	in	there.	
Comment	–	The	problem	is	that	we	do	not	know	what	the	best	possible	solution	is,	so	it	is	impossible	to	
gauge	whether	we	have	the	most	performance	portable	solution.	
	

Breakout	Session	D	–	Performance	Portable	Abstractions	

Lead:	Rob	Hoekstra	(SNL)	
This	discussion	session	was	1	of	2	to	focus	on	the	future	of	parallel	programming	models	and	the	value	
of	abstractions	that	allow	performance	portability	across	the	diversity	of	hardware	architectures	the	
community	is	grappling	with	already	today.	In	common	with	the	other	session,	focused	on	5	questions.	
	

1. What	is	meant	by	performance	portability?	
2. At	what	level	of	the	programming	models	do	we	most	need	these	abstractions?	
3. What	are	the	tradeoffs	of	different	approaches	to	these	programming	models	and	abstractions?	
4. What	do	we	need	from	the	vendors	and	community?	
5. What	are	the	priorities	we	believe	the	programs	should	support?	

	

What	is	meant	by	performance	portability?	
Isn’t	the	real	question,	what	level	of	performance	are	we	targeting	for	our	codes	or	what	is	‘good	
enough’	when	it	comes	to	performance	portability?	What	is	‘good	enough’	clearly	varies	depending	
upon	the	community.	In	some	cases,	within	an	order	of	magnitude	of	peak	is	good	enough	(climate?)	
while	others	want	as	close	to	peak	as	possible	(astrophysics?).	In	many	cases,	code	teams	have	a	limited	
amount	of	time	to	invest	in	performance	improvements	and	they	rely	on	slow	incremental	improvement	
especially	when	the	code	base	is	large	(NNSA).	This	implies	that	a	crucial	value	proposition	of	
performance	portable	abstractions	(PPAs)	is	productivity.	Can	an	existing	code	incrementally	adopt	this	
technology	to	gain	performance	and	portability?	Can	a	new	code	utilize	this	technology	to	incrementally	
improve	their	productivity	and	performance	portability?	Perhaps	the	most	appropriate	metric	is	“How	
rapidly	can	a	code	be	brought	up	and	running	productively	on	a	new	platform	with	‘good	enough’	
performance”?	Performance	portable	abstractions	are	valuable	when	they	contribute	positively	to	that	
metric.	

At	what	level	of	the	programming	models	do	we	most	need	these	abstractions?	
How	many	‘levels’	are	there?	We	can	define	2	and	perhaps	3.	High-level	programming	models	are	in	the	
category	of	domain	specific	languages	(DSLs)	or	library	APIs	that	support	domain	specific	algorithms.	At	
the	lowest	level,	the	focus	is	on	direct	manipulation	of	hardware	features	such	as	vector	units,	etc.	A	
middle	level	could	be	defined	which	captures	‘patterns’	which	are	common	across	many	communities	
such	as	gather-scatter	or	cache	oblivious	kernels	supporting	hierarchical	block	algorithms,	which	can	be	
tuned	to	particular	architectures.	This	middle	layer	is	where	our	PPAs	are	most	often	found.	We	see	
high-level	abstractions	as	being	most	valuable	as	a	productivity	enhancement	for	a	particular	domain.	
They	can	have	the	weakness	of	being	overly	rigid	and	difficult	to	customize	to	support	multiple	code	
bases	even	if	they	are	in	the	same	domain.	Lower	level	abstractions	can	bring	a	greater	degree	of	
customization	but	at	the	cost	of	complexity	for	the	developer.	It	is	unclear	where	the	sweet	spot	lies.	
The	ability	to	work	primarily	to	a	high	level	abstraction	while	having	the	access	to	the	lower	levels	when	
necessary	seems	to	be	the	consensus	view.	A	crucial	issue	is	community	support	for	these	abstraction	
tools.	Adoption	of	these	technologies	leaves	a	code	team	vulnerable	to	an	outside	team/community,	

Breakout	Discussions		

	

31	

which	may	have	differing	priorities	and	timetables.	We	see	many	successes	and	failures	in	this	space	
from	which	we	can	perhaps	learn	some	lessons.	High	Performance	Fortran	has	largely	failed	due	to	lack	
of	adoption	by	the	community	while	OpenMP	has	seen	significant	adoption.	However,	OpenMP	and	the	
vendor-developed	runtimes	have	struggled	to	meet	the	performance	expectations	of	the	community.	
The	newer	players	are	template	meta-programming	C++	based	layers.	They	are	showing	initial	success	
and	the	hope	is	that	they	will	strongly	influence	future	language	standards	adoption	of	parallel	
constructs.	Will	Fortran	be	a	part	of	that	movement?	There	is	hope	that	the	size	of	the	community	that	
cares	about	performance	on	parallel	architectures	has	grown	and	this	will	drive	more	aggressive	pursuit	
of	mature	parallel	programming	models	and	environments.	

What	are	the	tradeoffs	of	different	approaches	to	these	programming	models	and	abstractions?	
There	are	a	wide	variety	of	approaches	including	directives,	language	extensions,	libraries/APIs,	DSLS	to	
name	a	few.	A	focus	of	the	discussion	was	on	language	and	language	extension-based	approaches	
verses	directive-based	approaches.	Directives	clearly	have	the	advantage	of	being	language	agnostic.	
There	appears	to	be	a	significant	cost	however	due	to	the	lack	of	ability	to	manage	data	attributes	such	
as	type	and	layout.	This	can	significantly	hamper	the	compiler’s	ability	to	infer	intent	and	optimize	
effectively.	It	was	noted	that	there	are	good	reasons	why	the	most	successful	parallel	programming	
model/environment	(MPI)	is	library/API-based	rather	than	directive-based.	Language	specific	
approaches	are	showing	significant	progress	especially	in	the	C++	arena.	If	these	technologies	are	
successfully	integrated	into	the	language	standard	they	could	prove	to	be	a	compelling	approach.	
Currently,	however,	they	are	driving	issues	with	complexity,	compile	times	and	executable	sizes.	
OpenMP	appears	to	be	the	most	broadly	adopted	shared	memory	parallel	environment.	There	are	
significant	concerns	about	its	current	performance	and	complexity.	A	potential	opportunity	for	a	
language	agnostic	solution	may	lie	with	the	LLVM-IR.	With	many	of	the	compilers	adopting	LLVM,	this	
presents	an	opportunity	to	leverage	the	LLVM-IR	layer	to	implement	parallel	performance	
enhancements.	There	appears	to	be	little	interest	from	the	community	in	DSLs	currently.	Lower	level	
constructs	seem	to	be	the	direction	the	community	is	headed	with	the	expectation	that	they	will	be	
more	broadly	applicable.	However,	it	was	noted	that	other	communities	such	as	the	neuromorphic	
community	are	investing	in	DSLs	and	we	should	track	this.	

What	do	we	need	from	vendors	and	the	community?	
With	regard	to	the	vendors	a	key	aspect	is	development	of	better	communication	paths.	Multi-lab	
communities	(such	as	the	co-design	community)	appear	to	be	effective	in	allowing	a	‘common	voice’	to	
speak	to	the	vendors.	The	vendors	can	be	highly	responsive	to	this	approach	especially	when	we	can	
articulate	the	value	of	a	capability	to	a	broader	segment	of	their	market.	Delivery	timelines	can	vary	
dramatically	from	vendor	to	vendor	and	we	clearly	need	to	move	the	vendors	towards	response	times	
that	meet	our	mission	needs.	Early	and	regular	engagement	with	the	vendors	has	proven	highly	
valuable.	A	key	example	from	the	Centers	of	Excellence	is	early	access	to	the	development	and	
execution	environments.	Many	issues	that	would	only	have	been	identified	after	a	platform	was	
delivered	can	now	be	addressed	significantly	earlier.	Compilers	are	seen	as	a	key	part	of	the	toolchain	
that	can	benefit	from	strong	engagement	between	the	vendors	and	the	labs.	The	vendors’	movement	to	
adopt	LLVM	as	a	key	part	of	their	compiler	toolchain	is	seen	as	a	very	positive	direction.	A	forum	for	
engagement	has	informally	developed	and	we	should	strive	to	formalize	it.	In	addition,	we	believe	there	
should	be	more	emphasis	placed	on	open	or	shared	tools	especially	with	regards	to	performance	
analysis.	In	general,	moving	away	from	vendor	proprietary	tools	to	open	source	tools	is	a	preference	in	
the	community.	There	are	open	source	efforts	in	some	cases	driven	by	large	companies	such	as	Google	
that	we	should	better	leverage.	A	model	for	success	appears	to	be	development	of	an	open	source	
baseline	implementation	that	the	vendors	then	optimize	for	their	platforms.	

Breakout	Discussions		

	

32	

What	priorities	do	we	want	to	see	supported	by	the	programs?	
Several	points	of	emphasis	where	made	here.	With	regards	to	large	procurements	stronger	emphasis	
should	be	placed	on	the	software	environments.	The	Centers	of	Excellence	are	driving	earlier	evaluation	
of	the	software	and	we	need	this	to	continue	throughout	the	machine	lifetime.	The	vendor	must	be	
committed	to	continuous	improvement	of	the	development	environment	as	a	whole	and	the	compilers	
in	particular.	Performance	improvements	for	the	codes	need	to	continue	to	be	a	joint	effort	with	the	
vendors	beyond	the	initial	deployment	of	the	platform	and	acceptance	testing.	Another	point	of	
emphasis	was	the	need	for	strong	engagement	by	the	labs	with	the	standards	communities	(C++,	
Fortran,	OpenMP,	MPI,	etc.).	This	engagement	has	increased	in	the	past	year	or	two	and	it	is	already	
paying	dividends.	In	particular	we	need	to	explore	what	the	communities	needs	are	within	the	Fortran	
arena.	Overall,	the	group	would	like	to	see	better	collective	focus	from	the	programs	with	a	heavy	
emphasis	on	meeting	the	needs	of	the	mission	codes.	

Key	Points	
The	key	points	that	were	exposed	in	this	discussion	were:	
• Performance	portability	is	hard	to	quantify	but	you	know	it	when	you	see	it.	
• Maintainability	and	productivity	are	a	crucial	part	of	the	equation.	
• Dependencies	on	more	tools	and	libraries	are	clearly	in	our	future	but	this	can	be	vulnerability.	
• OpenMP	appears	to	be	the	de	facto	winner	in	the	on-node	parallelism	wars	but	language-based	

approaches	are	showing	a	lot	of	promise.	
• Procurements	should	emphasis	the	software	environment	more.	
• We	need	to	continue	to	increase	our	engagements	with	the	standards	communities.	

	

Outbrief	notes	(Performance	portable	abstractions	–	Hoekstra):	
• What	is	“good	enough”,	i.e.	a	reasonable	target	for	our	code	performance?	The	responses	were	that	

the	answer	varies	by	user	community.		Some	communities	need	peak	performance	while	others	
need	less	performance.		Performance	portability	should	be	about	creating	more	maintainable	code	
and	getting	higher	productivity	from	the	code.		How	agile	is	the	code	base	with	respect	to	getting	up	
and	running	on	a	new	platform?		There	is	an	enormous	time	sink	required	to	make	this	happen	now.			

• At	what	level	do	we	want	abstractions?	People	like	high-level	abstractions	but	many	caveats	are	
required	to	make	full	use	of	them.		High-level	abstractions	may	constrain	too	much.		Where	is	the	
demand	for	such	high-level	abstractions?		Community	support	must	be	developed,	and	DSLs	provide	
a	good	example	of	this.		We	are	seeing	some	success	in	the	low-level	abstraction	layers.		Template	
metaprogramming,	Fortran,	and	Thrust	are	examples.		Fortran	has	been	effective	as	a	performance	
portable	approach	for	years	across	CPU-based	architectures	but	has	so	far	not	truly	responded	to	
changes	in	hardware.		Why?		Largely	because	the	parallel	constructs	in	Fortran	are	not	being	
supported.		Are	we	going	to	come	up	with	more	parallel	constructs	that	are	not	fully	supported?		
That	is	a	concern.	

• Looking	now	at	tradeoffs.		In	general,	productivity	drives	everything	else.		Meta-template	
programming	drives	up	complexity	and	compile	times.		Most	group	attendees	do	not	want	to	work	
with	OpenMP	but	prefer	to	work	with	something	that	involves	more	language-based	constructs.		
There	is	a	reason	why	MPI	is	not	directive-based	and	that	is	because	it	is	library-based	-	and	we	
should	learn	from	that.			

Breakout	Discussions		

	

33	

• What	do	we	need	from	vendors?		We	are	getting	better	at	working	with	vendors	(this	meeting	is	a	
good	example).		Vendors	tell	us	what	we	ask	for	should	have	broad	market	appeal.		And	the	vendors	
are	listening	but	timelines	can	vary	widely.		Compilers	are	a	crucial	area.		One	of	the	best	
interactions	I	see	is	when	code	developers	and	compiler	developers	work	together.		We	need	to	
create	a	forum	for	code	developers	and	compiler	developers	to	talk.			

• In	the	open	community	the	greatest	success	right	now	is	the	move	to	LLVM.		Do	we	want	to	work	at	
this	level	to	add	language	extensions?		That	is	an	open	question	and	should	be	explored.	

• In	the	(ASCR,	ASC)	programs	we	want	to	see	stronger	emphasis	on	the	software	environment	in	the	
procurements,	including	compiler	updates	and	support	through	the	life	of	each	platform.		We	need	
stronger	engagement	by	the	labs	with	standards	communities.		We	are	not	presently	involved	with	
Fortran	standards	right	now,	for	example,	and	that	needs	to	change.		Can	we	get	ASCR,	ASCR	and	
ECP	to	have	a	more	common	focus?	
	

Breakout	Session	E:	OpenMP	Futures	

Lead:	David	Richards	(LLNL)	
	
During	this	session	we	discussed	the	current	state	of	the	art	as	well	as	future	research	and	development	
directions	for	OpenMP.		We	addressed	questions	in	four	specific	areas:	
	

1. Performance	Portability:		Does	the	OpenMP	standard	offer	an	adequate	set	of	constructs	to	
write	code	that	will	perform	well	on	multiple	architectures?		I.e.,	is	it	possible	to	write	
performance	portable	code	in	OpenMP	

2. Usability	&	Interoperability:		What	are	the	most	important	usability	and	interoperability	
concerns	with	OpenMP	

3. Memory	Management:		Does	OpenMP	provide	adequate	facilities	to	manage	memory	
hierarchies,	especially	the	lowest	levels?	

4. Low-level	Optimizations:		Should	OpenMP	add	features	to	give	greater	control	over	low-level	
optimizations	such	as	loop	tiling,	loop	unrolling,	pipelining,	dependency	lists,	etc.?	

	
Regarding	performance	portability,	the	consensus	of	the	participants	is	that	the	only	practical	approach	
to	portability	at	this	time	is	lots	of	ifs	and	ifdefs.		This	isn’t	very	satisfactory	since	such	code	is	difficult	to	
understand	and	maintain	and	can	end	up	as	two	(or	more)	separate	codes	that	just	happen	to	sit	in	the	
same	files.		Key	challenges	also	include	large	performance	differences	between	compilers	and	little	or	no	
support	for	cases	where	different	hardware	characteristics	require	different	algorithms	to	obtain	good	
performance.		The	best	path	forward	appears	to	involve	finding	methods	to	separate	the	description	of	
the	work	from	the	mapping	of	the	work	to	the	hardware.		Relationships	between	work	units	will	also	
likely	need	to	be	defined.		Some	participants	expressed	a	hope	that	directives	that	were	more	
descriptive	(as	opposed	to	prescriptive)	might	help	compilers	do	the	right	thing.		This	lead	to	a	
discussion	of	whether	we	believe	in	magic	compilers.	
	
Regarding	usability,	we	find	that	there	are	few	good	examples	or	best	practices	to	follow,	especially	for	
OpenMP4.5.		A	set	of	such	examples	for	non-trivial	codes	would	be	of	significant	value,	especially	since	
it	appears	that	writing	good	code	in	OpenMP4.5	will	require	new	patterns	and	practices.		
Interoperability	also	needs	significant	work.		Many	scientific	libraries	have	been	developed	without	any	

Breakout	Discussions		

	

34	

notion	of	a	thread	or	memory	context.		In	the	past,	there	was	rarely	any	meaningful	context	to	worry	
about.		Moving	forward	it	will	probably	be	essential	to	pass	some	sort	of	resource	allocation	handle	to	a	
library—perhaps	something	akin	to	an	MPI	communicator—to	specify	how	a	library	can	acquire	and	use	
resources.	Tasking	constructs	offer	a	form	of	help,	but	aren’t	fully	up	to	the	job.		One	can	ask	for	
example,	what	would	support	for	“unbound”	threads	look	like	and	how	would	different	modules	acquire	
resources	from	a	pool	of	unbound	threads.	
	
Regarding	memory	management	we	again	agree	that	OpenMP	is	not	currently	adequate.		Existing	map	
constructs	are	far	too	tedious	for	complex	data	structures	and	need	improvement.		For	lower	levels	of	
the	memory	system	such	as	caches	and	registers,	the	situation	is	also	not	good.		OpenMP	writes	a	low-
level	code	for	the	developer	but	offers	very	little	control	over	how	that	code	is	written.		Our	best	
thoughts	are	that	some	kind	of	mark	up	on	data	attributes	might	help,	especially	if	such	mark	up	could	
be	“sticky”	and	carry	data	through	multiple	functions,	modules,	or	compilation	units.	
	
Finally,	our	discussion	of	low-level	optimization	found	that	optimization	control	directives	could	be	
beneficial,	but	that	feature	creep	is	a	significant	concern.		The	best	driver	for	progress	would	be	specific	
use	cases.		Doacross,	collapse	of	non-rectangular	loops,	and	loop	tiling	were	identified	as	possible	
starting	points	with	at	least	some	potential	for	wide	adoption.		Future	work	on	auto-tuning	or	runtime	
adaptive	tuning	would	be	welcome.	

Outbrief	notes	(OpenMP	Futures	–	Richards)	
• Sriram	and	I	put	together	a	unified	set	of	questions	in	four	areas.		First	performance	portability	-	are	

there	machines	abstractions?	What	is	the	basic	state	for	OpenMP?		Solutions	tend	to	involve	lots	of	
“Ifs”	and	moving	them	to	other	places	–	that	is	not	portability.			

• Descriptive	options	would	help	the	compiler,	but	we	have	to	agree	on	some	magic.		That	will	be	
subject	of	work	over	time.			

• We	have	CPUs	and	GPUs	and	put	in	“ifs”	-	they’re	portable	if	the	app	developers	say	they	are.		
Otherwise,	specify	units	of	work	and	mappings	that	then	lead	to	more	abstractions.		The	
programming	style	of	OpenMP	needs	to	evolve	too.		We	need	a	better	STL	–	one	that	is	not	
inherently	non-threadsafe.	

• Do	we	need	best	practices?		We	agreed	“yes,”	it	would	be	a	good	idea	but	no	one	knew	where	they	
could	be	found	and	archived.		If	anyone	could	volunteer.		COE	should	be	doing	a	better	job	of	it.		

• There	was	some	discussion	of	classifying	codes	based	on	characteristics;	conversation	wandered	and	
did	not	gel.		We	talked	about	nesting	and	parallelization,	no	real	consensus/message.			

• On	interoperability,	there	are	significant	problems	dealing	with	third	part	libraries.		It’s	the	spiritual	
cousin	of	a	MPI	communicator	to	inform	a	library	what	it	is	working	with	–	that	would	be	nice.		The	
tasking	constructs	of	OpenMP	provide	some	support,	but	don’t	do	exactly	what	we	need.		Our	
libraries	have	been	developed	in	a	context	fee	environment.		Many	things	you	want	to	do	in	C++	
don’t	map	to	OpenMP.			

• Is	OpenMP	adequate	to	manage	the	lower	levels?		We	think	the	answer	is	“yes”	but	don’t	have	tools	
to	aggressively	mange	those	levels.		CUDA	manages	memory	space	and	kernel	launches	and	is	good	
at	it.		How	do	we	get	there	without	losing	performance	portability?		We	don’t	know	traits	or	where	
problems	are,	directives	are	sticky	so	that’s	something	the	runtime	could	trace/track	(but	how	do	
you	instantiate	based	on	runtime	tracking,	maybe	late	binding	-	a	lot	of	pieces	to	work	through).			

• Do	we	need	more	control?	There	are	tensions	between	portability	and	performance.		These	kinds	of	
directives	are	useful	to	a	section	of	the	community.		We	could	use	the	loop	collapse	if	it	could	be	
applied	more	often	(i.e.	non	rectangular	loops).		Standardizing	directives	would	serve	a	real	purpose.		

Breakout	Discussions		

	

35	

In	communicating	with	vendors,	we	could	do	a	better	job	of	collecting	examples	when	we	can’t	do	
what	we	want	–	we	need	to	keep	pushing.	

Explorations	of	auto	tuning	and	runtime	adaptive	tuning	would	help.	
	

Breakout	Session	F	–	OpenMP	Futures	

Lead:	Sriram	Swaminarayan	(LANL)	
	
Write-up	pending	

Outbrief	notes	(OpenMP	Futures	–	Swaminarayan):	
• There	were	three	main	things	on	our	wish	list:		

1. We	do	not	have	enough	users	on	the	standards	group	in	the	apps	area	to	direct	where	we	want	
it	to	go	to	help	the	hardware	side.		

2. We	need	a	high-level	way	of	doing	memory	management	across	platforms,	so	we	are	not	
reworking	it	for	each	platform.	

3. A	subgroup	of	OpenMP	needs	to	talk	to	the	OpenMP	subcommittee.	
• We	agree	on	a	need	for	best	practices	but	there	are	not	many	resources,	plus	they	are	changing	

rapidly	in	terms	on	implementation	and	performance.		If	you	don’t	have	good	documentation	
features,	users	would	not	know	how	to	use	it.		The	standard	comes	out	before	it	has	been	“tried	in	
anger”;	we	saw	as	OpenACC	went	through	growing	pains.	

• Examples	on	OpenMP	tutorials	–	The	one	provided	at	the	Supercomputing	conference	was	a	good	
resource,	versus	those	on	the	website.	

• The	“gotchas”	are	crossing	NUMA	domains,	i.e.	simple	things	everyone	learns	the	hard	way.		The	
NERSC	tutorial	from	GCC	is	available.		Best	practices	for	performance	portability	are	not	
documented	since	we	don’t	know	them	yet.	

• Interoperability	with	other	threading	systems	is	something	we	want	OpenMP	to	deal	with	in	the	
future.			

• We	would	like	OpenMP	to	be	more	descriptive	on	the	execution	and	memory	model.		There	are	
some	things	we	can’t	do	in	OpenACC	since	they	are	not	descriptive	enough.		You	may	be	able	to	
write	a	descriptive	model	on	top	of	a	prescriptive	model,	so	you	don’t	need	both.			

• We	need	to	be	able	to	handle	shared	data	properly.	There	is	no	easy	way	path	from	OpenMP3	to	
OpenMP4.5.		It	would	be	nice	to	have	defaults	that	behave	in	similar	ways	in	different	architectures.		
OpenMP	needs	to	be	more	prescriptive	than	it	is.			

• There’s	a	proposal	that	exists	(although	not	accepted	yet)	that	the	configuration	space	has	grown	
large	and	we	might	be	able	to	reduce	it	by	using	something	like	Raja	so	all	OpenMP	directives	are	in	
one	space.			

• It	is	tiresome	to	use	a	new	API	on	a	new	machine,	we	need	consistency.		
• It	would	be	nice	to	assign	a	priority	to	memory.			
• We	discussed	sequential	optimization	–	there	is	much	responsibility	placed	in	the	compiler.		Doing	

an	analysis	for	dependencies	may	be	no	trivial	matter	for	the	compiler.		We	also	discussed	fusion	
and	proactive	placing	of	a	large	number	of	parallel	regions	next	to	each	other	to	avoid	
joining/swarming	threads	again.	

• The	configuration	space	keeps	expanding.	
	

Breakout	Discussions		

	

36	

Break	out	Session	G:	Tools/Compiler/System	Software	Requirements	

Lead:	Edgar	Leon	(LLNL)	
This	session	of	about	20	participants	included	representatives	from	Cray,	Intel,	and	IBM	as	well	as	two	
centers	of	excellence:	LLNL	and	SNL/LANL.	Six	questions	were	posed	to	the	audience:		
	

(1) What	tools	exist	today	that	help	achieve	performance	portability?		
(2) Is	memory	management	the	most	important	area	to	achieve	performance	portability?	Should	

vendors	provide	an	interface	for	tools	to	extract	information	of	interest?		
(3) How	can	an	application	and	libraries	share	resources	amiably?	Can	an	application	specify	what	

percentage	of	resources	they	are	willing	to	give	up	to	a	library?		
(4) What	role	should	compiler	technology	play	in	performance	portability?	What	features	do	we	

already	have?	What	features	are	needed?		
(5) Will	machine	learning	play	a	significant	role	for	performance	portability?	and		
(6) What	are	some	guidelines	for	performance	portability	with	respect	to	I/O	patterns	(e.g.,	burst	

buffers)?	How	about	memory	layouts	(for	HBM,	large	shared	caches,	etc.)?		
	
From	these	questions	four	of	them	were	discussed	and	are	summarized	below.	
	
1.	Existing	tools	that	help	with	performance	portability.	
Several	areas	were	identified	including	compiler-based	tools	(e.g.,	Cray's	Reveal,	OpenARC),	libraries	
(e.g.,	SCR,	MACSio),	profiling	interfaces	(e.g.,	KokkosP,	OMPT),	and	DSLs	(CHiLL,	AMRStencil).	The	group	
also	identified	a	need	for	tools	to	work	across	architectures	and	provide	an	"integrated"	view	on	
heterogeneous	systems.	There	is	a	clear	desire	to	have	common	interfaces	between	tools	across	
different	platforms.	For	application	developers	it	is	time	consuming	to	have	to	learn	a	new	tool	when	
moving	to	a	new	vendor’s	platform	and	thus	even	though	the	tool	may	help	address	a	certain	need,	it	is	
not	used.	Totalview	and	ScoreP	are	good	examples	of	tools	that	work	well	across	multiple	platforms.	
	
The	DWARF	debugging	standard	(http://dwarfstd.org/)	was	brought	up	since	vendors	spend	a	significant	
amount	of	time	modifying/extending	it	to	address	its	shortcomings.	However,	none	of	this	work	is	
contributed	back	to	the	community.	It	would	be	helpful	to	have	the	vendors	work	together	to	update	
the	DWARF	standard	to	include	the	extra	information	that	tools	developers	are	needing	to	create	
executables	and	extract	relevant	information	from	them.	For	example,	the	Intel	compiler	adds	extra	
information	that	Intel	tools	consume;	it	would	be	useful	if	that	information	was	standardized	in	DWARF	
version	5	(future)	so	that	other	tools	could	use	that	information.	
	
Tools	that	provide	a	more	unified	view	of	a	heterogeneous	system	seem	to	be	lacking.	One	promising	
approach	is	IBM's	HPM.	Another	promising	tool	to	add/identify	parallelism	in	codes	is	Cray's	Reveal	but	
it	does	not	work	with	GPUs	(OpenMP	4.5).	Having	Reveal	work	with	GPUs	would	be	extremely	useful.	
	
2.	Tools	for	memory	management	on	multi-level	memories.	
There	is	a	strong	desire	for	tools	that	give	application	and	tool	developer’s	visibility	into	where	data	is	
moving	as	the	application	executes.	Based	on	Karlin's	presentation	"Fundamental	Cross	Architecture	
Multi-Level	Memory	Support,"	the	following	features	were	identified	to	help	application	and	tool	
developers	understand	data	movement	and	improve	the	placement	of	data	on	a	multi-level	memory	
system:	(1)	Ability	to	mark	user	(subset)	data	structures	and	track	them	in	the	memory	hierarchy	
throughout	a	code	region.	Associate	location,	effective	access	latency	and	bandwidth.	Latency,	in	

Breakout	Discussions		

	

37	

particular,	was	emphasized.	For	example,	having	a	histogram	of	what	data	structures	experience	the	
highest	latencies	would	be	helpful;	(2)	Ability	to	query	memory	properties/attributes:	available	space	
(dynamically),	latency,	bandwidth	(numactl-like);	(3)	Control	placement	using	an	open	interface	that	
would	work	across	architectures,	i.e.,	KNL	and	GPUs.	KNL	uses	libNUMA,	which	is	supported	in	Linux	but	
libNUMA	does	not	allow	access	to	the	features	described	here;	(4)	Track	data	transferred	from	one	
memory	to	another	and	correlate	to	application's	objects/data	structures.	And,	importantly,	what	entity	
moved	the	data	(e.g.,	runtime	system,	user	initiated,	OS).			
	
PAPI	was	brought	up	as	a	useful	tool	in	the	past	but	does	not	provide	the	memory	information	desired	
and	PAPI	is	CPU	centric.	It	would	be	useful	to	expand	PAPI	to	be	node-based	but	it	may	include	work	
throughout	the	software/hardware/OS	stack.	Another	issue	with	PAPI	is	that	the	maintainers,	
apparently,	have	lost	most	of	their	funding	and	thus	the	tool,	in	many	cases,	is	not	accurate	as	brought	
up	by	Jeanine	Cook	in	the	presentation	"The	Importability	of	Performance	Tools."	There	may	be	an	
opportunity	for	DOE	to	support	PAPI	or	perhaps	investigate	other	tools	like	Perfminer.	There	are	also	
tools	like	Memspy,	which	seem	to	provide	standard	interfaces	to	get	information	about	the	memory	
subsystem	but	it	is	not	clear	whether	this	would	be	enough	to	support	multi-level	memories.	
	
A	key	observation	regarding	these	types	of	tools	is	that	we	need	them	to	be	accessible	at	the	user-level,	
otherwise	cannot	be	used	by	regular	application	or	tool	developers	on	DOE	clusters.	Finally,	it	is	also	
desirable	to	identify	different	application	uses	cases	of	intended	use	of	a	multi-level	memory	system.	
	
3.	Applications	and	libraries	playing	nicely	
There	is	a	significant	concern	due	to	contention	for	resources	between	applications	and	libraries:	How	
can	application	and	libraries	share	resources	effectively?	What	happens	when	the	application	needs	all	
the	memory,	but	then	a	library	or	other	tool	needs	to	execute	and	use	resources?	For	example,	an	
OpenMP	application	may	need	to	call	an	MPI-only	library	or	a	library	with	Pthreads.	We	need	a	
mechanism	to	orchestrate	friendly	coordination	between	these.	This	may	result	in	primitives	or	a	
"contract"	to	coordinate	the	needs	of	the	application	and	libraries.	Libraries	could	be	parameterized	
based	on	this	contract	but	the	interface	would	need	to	be	defined.	Cray	does	this	implicitly	with	their	
optimized	libraries,	e.g.,	BLAS.	There	is	an	implicit	handshake	between	the	app	and	the	library.	The	
library	may	move	data	between	memories	or	decide,	based	on	problem	size,	which	device	to	execute	on	
(e.g.,	CPU	or	GPU).	It	would	be	helpful	to	further	understand	what	decisions	are	made	in	these	libraries	
and	also	what	"application	state"	was	changed	after	a	library	was	executed.	
	
4.	Compiler	technology	and	performance	portability.	
The	group	focused	on	two	areas:	code-to-code	generation	and	descriptive	vs.	prescriptive	programming	
abstractions	(e.g.,	OpenACC	and	OpenMP).	First,	code-to-code	generation	(source-to-source	compiler	
transformations)	can	be	of	significant	value	to	achieve	performance	portability.	The	transformed	code	
can	retain	important	semantic	information	that	can	then	be	harvested	by	architecture-specific	compilers	
and	achieve	good	performance.	During	the	workshop	several	examples	were	demonstrated	including	
OpenARC	and	the	importance	of	high-level	intermediate	representations	and	Domain	Specific	Languages	
regarding	stencils	through	frameworks	such	as	CHiLL	and	ROSE.	There	are	some	disadvantages	though	
mainly	the	ability	to	map	back	to	the	original	source	code.	This	is	a	major	issue	when	debugging	for	
example.	In	addition,	it	takes	many	months	for	a	code	team	to	"trust"	a	compiler	and	compiler	options.	
	
Second,	descriptive	approaches	such	as	OpenACC	give	the	compiler	more	flexibility	to	optimize	code	and	
reduces	application	developer's	burden	to	tell	the	compiler	exactly	what	to	do	to	optimize	their	codes.	
In	many	cases,	however,	the	compiler	fails	to	optimize	code	because	of	many	constraints	that	ultimately	

Breakout	Discussions		

	

38	

the	application	developer	can	easily	resolve.	Thus,	the	group	proposed	a	combined	approach	that	would	
allow	the	use	of	a	descriptive	interface	first	and	depending	on	the	results	a	prescriptive	approach	might	
be	necessary.	
	
OpenACC	was	developed	to	fill	the	gap	between	OpenMP	and	device	computing	capabilities.	Now	that	
OpenMP	4.5	has	similar	device	support,	OpenACC	is	in	maintenance	mode	but	feature	frozen.	It	seems	
that	some	vendors	will	continue	to	support	OpenACC	with	bug	fixes	but	are	targeting	OpenMP	for	
future	work	and	improvements.	Considering	that	OpenMP	is	a	prescriptive	approach,	there	is	a	need	for	
the	OpenMP	forum	to	have	a	discussion	about	the	role	of	descriptive	approaches	within	OpenMP.	

Outbrief	notes	(tools/compiler/system	software	requirements	–	Leon):	
This	breakout	session	was	about	tools,	compilers	and	system	requirements.		We	had	a	small	but	

productive	group	with	IBM,	Intel	and	Cray	present.		Participants	from	LLNL	and	SNL	and	LANL	were	
present	on	the	DOE	NNSA	side.		I	will	focus	on	the	three	questions:	

	
1. Existing	tools	that	may	be	portable	across	multiple	architectures?			

There	was	a	general	consensus	on	the	desire	for	a	more	common	interface	between	tools	across	
different	platforms.		It	is	painful	for	application	developers	to	learn	a	tool	for	a	specific	architecture.		
Another	example	is	a	tool	like	Totalview,	particularly	how	they	deal	with	profiling	information	-	
memory	introspection	is	a	big	challenge	for	performance	portability.		We	got	into	the	WARF	library	
and	spent	a	few	minutes	on	it.		Vendors	have	to	do	a	lot	of	work	to	deal	with	shortcomings	of	this	
library	(and	third	party	tool	developers’	shortcomings).		If	a	lot	of	work	has	to	be	done	on	these	
existing	standards,	why	don’t	vendors	put	more	effort	into	changing	the	standard	or	providing	
feedback	for	the	standard?		Vendors	would	really	like	to	see	a	use	cases	and	a	joint	meeting	
(including	vendors	and	DOE)	providing	use	cases	on	what	is	important	so	it	could	be	worked	into	a	
standard	via	discussions	with	a	subset	of	the	community.	

2. Tools	for	managing	memory	management	patterns?		What	is	happening	to	data	structures?		
We	need	more	feedback	from	the	runtime	system	about	the	data	structures.		We	discussed	PAPI,	
and	it	was	useful	when	it	provides	the	right	information.		Architectures	now	make	this	data	difficult	
to	understand.		PAPI	seems	to	be	centric	so	maybe	moving	to	a	more	node-based-execution-like	
interface	for	PAPI.		Another	important	area	is	user	level	tools.		Many	do	not	have	access	to	the	root	
level	across	the	clusters.		We	need	to	focus	on	user	level	access.		It	would	be	useful	to	be	able	to	
associate	latency	bandwidth	to	certain	data	structures,	especially	latency	with	a	certain	data	
structure.		Maybe	a	histogram	to	optimize	code.	

3. Interoperability	between	application	and	the	library,	and	in	how	they	share	resources?		When	you	
come	to	a	library,	you	are	in	a	working	set	of	your	application,	and	that	is	problematic.		What	about	
setting	a	contract	between	the	application	and	library	defining	how	they	are	going	to	share	
resources?		If	we	could	come	up	with	an	API,	that	would	be	useful.		Cray	provided	feedback	and	
mentioned	they	do	a	lot	on	this	with	their	optimized	libraries.		Determining	whether	the	data	is	
GPU,	CPU,	and	size	of	data	will	inform	the	data	movement	accordingly.		Perhaps	having	a	better	
understanding	of	how	Cray	does	it	for	their	libraries	could	help	us.	

4. We	discussed	code	generation,	and	what	would	be	useful...how	can	we	go	back	to	the	original	
source	code?		Prescriptive	and	descriptive	approaches	for	things	like	OpenMP	were	discussed.		It	is	
useful	to	have	both.	It	seems	best	to	start	with	a	descriptive	approach,	and	then	have	the	
prescriptive	approach	available	as	an	additional	option.		

	
	

Breakout	Discussions		

	

39	

Breakout	Session	H:	Tools/Compilers/System	Software	Requirements	

Lead:	Brian	Freisen	(LBNL)	

Q:	What	tools	exist	today	that	help	achieve	performance	portability?	
Our	group	had	trouble	answering	this	question,	which	indicated	strongly	that	such	tools	probably	don’t	
exist.	Or,	if	they	do	exist,	they	are	not	readily	available.	For	example,	ALCF	has	found	that	vendor-
supplied	tools	(e.g.,	from	IBM),	are	rarely	sufficient	or	useful,	and	as	a	result	they	rely	almost	entirely	on	
3rd-party	tools,	e.g.,	TAU.	Unfortunately	there	is	a	trend	that	some	of	these	tools	are	supported	directly	
or	indirectly	by	DOE	projects,	which	have	limited	lifetimes	(funding).	If	the	developers	of	such	tools	can’t	
find	a	way	to	support	themselves	outside	of	DOE,	then	they’ll	be	stuck	when	the	project	ends.	TAU	is	a	
success	story	that	has	avoided	this	fate;	ParaTools	sustains	itself	independently	of	DOE.	Additionally,	the	
group	agreed	that	the	most	valuable	tools	available	to	everyone	in	the	HPC	community	are	compilers.	In	
fact,	there	were	some	interesting	comments	regarding	compilers	as	tools	in	the	“afterword”	from	some	
of	the	vendor	representatives	at	the	conclusion	of	the	meeting.	John	Levesque,	for	example,	cautioned	
that	developers	often	want	to	use	bleeding-edge	features	of	compilers	without	fully	appreciating	the	
performance	implications	involved	in	doing	so.	Similarly,	James	Reinders	said	that	vendor	compiler	
teams’	goals	are	often	driven	by	the	specifications	in	the	procurement	RFPs,	which	often	place	more	
emphasis	on	support	for	bleeding-edge	features	than	on	performance	and	stability.	(One	code	team	has	
a	battery	of	18,000	regression	tests	for	their	>1M	LOC	code,	and	Intel	v13	(!)	is	the	most	modern	version	
of	the	compiler	suite	which	can	pass	all	of	the	tests.)	
	
Very	quickly	the	discussion	then	focused	on	a	tool	that	already	is	available	and	is	probably	the	most	
valuable	to	everyone:	dissemination	of	knowledge.	Many	developers	in	the	HPC	community	have	
followed	many	different	paths	in	the	pursuit	of	performance	portability,	but	because	the	knowledge	
gained	from	these	exploits	seems	to	be	shared	so	infrequently,	we	often	re-invent	the	wheel,	or	are	
never	made	aware	of	solutions	that	have	worked	well	for	others	who	are	working	on	similar	problems.	

	
The	entire	breakout	group	agreed	strongly	with	the	notion	that	disseminating	knowledge	and	
experiences	with	regard	to	performance	portability	strategies	needs	to	be	a	top	priority.	We	
brainstormed	several	different	avenues	for	addressing	this,	including	
	

• More	frequent	(and	perhaps	less	dense)	meetings	such	as	the	one	just	concluded	in	Glendale	
• Collaborative	forums	of	some	form	
• A	webinar	series	
• Discussion	forums	
• Wiki	pages	

	
Things	of	this	sort	are	beginning	to	precipitate	already:	the	Trinity	COE	already	has	begun	monthly	KNL	
meetings,	and	IXPUG	has	similar	regular	meetings.	However,	a	major	complication	in	attempting	to	
implement	any	of	these	solutions	is	the	NDAs	that	each	lab	has	with	various	vendors.	We	would	
therefore	need	a	way	to	institutionalize	these	kinds	of	venues	in	a	way	that	protects	confidential	
information,	e.g.,	by	allowing	access	only	to	people	with	e-mail	addresses	from	corresponding	
institutions.	

Breakout	Discussions		

	

40	

What	tools/interfaces	should	vendors	provide	to	extract	information	interest	about	memory	access	
patterns,	data	layout	in	memory	subsystems,	etc.?	
This	is	a	very	difficult	task	to	accomplish,	in	part	because	doing	so	requires	access	to	things	like	
hardware	counters.	Doing	things	like	tracking	loads/stores	is	possible	(e.g.,	VTune’s	“memory	access”	
mode),	but	the	complex	cache	hierarchy	in	KNL	systems	makes	it	difficult	to	follow	individual	pieces	of	
data	in	any	more	detail	than	that.	As	a	result,	we	can	obtain	statistical	samples	of	somewhat	generic	
memory	access	patterns	(loads	and	stores),	but	gleaning	insight	from	those	statistics	can	be	challenging.	
The	group	also	discussed	the	barrage	of	available	flavors	of	malloc()	and	prospects	for	leveraging	them	
to	do	memory	access	analysis.	
	

How	can	applications	and	libraries	share	resources	amiably?	Can	an	application	specify	what	portion	
of	available	resources	it	is	willing	to	give	up	for	library	calls?	 	
Intel’s	Math	Kernel	Library	(MKL)	is	a	mixed	bag	in	this	regard.	On	one	hand,	it	allows	the	user	to	force	
MKL	routines	to	use	the	same	set	of	existing	threads	from	the	application	that	called	it,	rather	than	
spawning	new	threads	inside	each	MKL	call	(leading	to	unnecessary	nested	thread	parallelism	and	
perhaps	degradation	in	performance).	On	the	other	hand,	users	have	found	that	MKL	often	creates	
unnecessary	copies	of	small	matrices	during	calls	to	certain	linear	algebra	routines.	
	
The	group	also	discussed	the	prospect	of	an	application	allowing	(or	restricting)	a	library	call’s	access	to	
various	subsystems,	e.g.,	is	the	library	allowed	to	use	high-bandwidth	memory,	or	should	it	be	restricted	
to	DRAM?	It’s	not	clear	whose	responsibility	that	should	be.	On	one	hand,	the	purpose	of	libraries	is	to	
be	of	use	to	a	wide	range	of	applications	and	therefore	should	support	generic,	flexible	interfaces;	on	
the	other	hand,	library	developers	should	not	be	expected	to	re-architect	their	entire	interfaces	each	
time	a	new	architecture	emerges.	

What	role	should	compiler	technology	play	in	performance	portability?	What	features	do	we	already	
have?	What	features	are	still	needed?	
As	discussed	in	an	earlier	section,	it	may	not	be	wise	to	demand	cutting-edge	feature	support	from	
compilers	when	they	already	suffer	from	stability	issues	stemming	from	features	which	have	long	since	
been	implemented.		(One	code	team	is	forced	to	use	v13	of	the	Intel	compiler	suite	because	no	newer	
version	can	pass	their	entire	regression	test	suite.)	
	
Developers	have	often	experienced	lackluster	response	from	compiler	vendors	when	reporting	bugs.	To	
motivate	vendors	to	focus	more	heavily	on	compiler	stability,	perhaps	we	should	take	John	Levesque’s	
and	James	Reinders’s	comments	seriously,	e.g.,	by	focusing	more	heavily	on	compiler	support	in	
procurement	RFPs.		As	it	stands	currently,	a	common	experience	is	for	a	site	to	lose	leverage	with	regard	
to	compiler	support	once	the	machine	has	been	accepted.	The	group	gravitated	significantly	toward	this	
idea	in	particular,	and	suggested	assembling	a	suite	of	benchmarks	(composed	perhaps	of	mini-apps	
contributed	from	the	community)	that	must	compile	and	run	on	new	systems	(with	new	compilers)	
before	they	are	accepted.	
	
Another	common	experience	with	regard	to	compiler	technology	has	been	the	direct	interaction	of	
compiler	engineers	with	code	teams.	This	has	manifested	in	various	forms	already,	including	the	
“dungeon	sessions”	which	NERSC	and	others	have	participated	in	with	Intel	over	the	last	year	as	part	of	
the	NERSC-8	procurement.	Compiler	bugs	that	can	be	shown	directly	to	engineers	are	often	elevated	to	
high	significance	within	the	vendor	software	teams	and	are	fixed	more	readily.	Someone	also	suggested	
inviting	compiler	engineers	to	COE	meetings	such	as	this	one,	both	to	provide/receive	feedback	among	

Breakout	Discussions		

	

41	

HPC	consumers/developers,	and	also	to	provide	perspective	on	what	goes	into	writing	
performant/stable/cutting-edge	compilers.	

Outbrief	notes	(Tools/Compilers/System	Software	Requirements	–	Friesen):	
• We	discussed	the	same	questions	as	Edgar’s	group.		What	exists	already?		There	are	a	few	platform-

agnostic	things	available,	like	Cray	“Reveal,”	Intel	“Advisor	XC.”		OpenMP	is	not	a	tool,	but	it	is	a	
mixed	bag.		As	we’ve	learned,	there	seem	to	be	many	tools	and	libraries,	and	the	numbers	speak	for	
themselves	that	this	problem	is	not	solved.		It	is	the	sheer	volume	of	tools	that	makes	this	learning	
curve	so	steep.			

• Lack	of	interaction	between	appropriate	groups	is	an	issue;	more	frequent	meetings,	perhaps	
smaller	groups,	maybe	a	wiki	page,	and	holding	conference	calls	might	help.		A	COE	may	be	in	a	
position	to	help	with	this	though	NDAs	make	it	challenging.		With	such	interactions	we	could	
quantify	problems	with	stencils,	tree	traversals,	and	categorize	them	by	their	issues	in	terms	of	
performance	portability.		More	frequent	interaction	may	lead	to	agreement	in	the	terminology	for	
“performant”	and	“portable”	and	“performance	portable”	codes.		Many	were	excited	about	the	idea	
of	more	interaction.	

• With	tools,	it’s	interesting	that	at	ALCF	they	have	less	reliance	on	vendor-supplied	tools	and	more	
reliance	on	third-party	tools.		Vampir	was	a	great	success	story,	as	an	example.		There	are	issues	
with	third-party	tools	if	support	runs	out	for	them.		The	most	important	tools	from	vendors	are	
compilers.		

• On	topic	#2,	tools	for	analyzing	memory	patterns,	this	is	hard	to	implement	especially	following	
pieces	of	memory	through	the	memory	subsystem	(pre-fetched	versus	cache	line).		It	is	tricky	with	
counters	and	the	outer	branch.		It	would	be	nice	to	have	finer-grain	information	on	what	the	
memory	is	doing.		We	talked	about	the	main	"Mallocs"	out	there.		Memkind	can	be	useful	for	
placing	memory	in	a	coarse	way.		Some	would	like	more	control.	

• With	respect	to	applications	and	libraries	playing	together	nicely	-	MKL	is	an	event	variable.		If	I	
implement	threads	down	to	spawn	new	ones	–	that’s	a	nice	success.		But	it	also	results	in	
unnecessary	copying	of	data.			

• Being	able	to	inform	a	library	about	what	you	want	to	do	with	data	instead	of	refactoring	your	
library	would	be	helpful.		Those	libraries	don’t	know	who	the	applications	are.		It	is	hard	to	have	a	
generic	interface.			

• When	libraries	make	certain	development	choices	(e.g.	PETSc),	there	is	probably	a	balance	to	be	
struck	in	libraries	and	the	applications	to	use	them	-	we	want	both,	to	have	freedom	to	choose,	
especially	when	architectures	don’t	exist	yet.		Could	we	use	emulator	technology	to	trace	data?		
That	is	an	interesting	talk.	

• For	compilers,	intermediate	representations	of	interest	were	discussed.		LLVM	was	used	the	most,	
and	GCC	was	too	complicated	for	many.	

• There	are	many	things	we	want	compilers	to	do,	but	we	have	trouble	getting	them	to	work	as-is.		
There	are	even	cases	where	codes	have	to	use	three-generations-old	compilers	to	pass	their	entire	
suite	of	tests.		That	is	a	long	time	in	terms	of	compiler	lifetimes.		The	more	we	want	from	the	
compilers,	the	more	complicated	they	will	get.		Solving	all	these	problems	with	our	code	is	
undesirable.		We	should	be	mindful	of	the	burden	we	place	on	compiler	technology.			

• A	fruitful	environment	is	when	compiler	teams	and	apps	developers	are	in	the	same	room.		Isolated	
bugs	can	be	time	consuming.		Showing	a	bug	to	a	compiler	team	member	results	in	a	faster	
turnaround	time	for	the	solution.		Intel	Dungeon	Sessions	have	observed	this	many	times.		

Recommendations	for	Follow-on	Meetings		

	

42	

Recommendations	for	Follow-on	Meetings	
What	follows	is	a	summary	of	recommendations	that	came	out	of	survey	responses	(thanks	to	everyone	
who	participated	in	those),	steering	committee	discussions,	and	some	side	conversations	with	the	
organizers.	These	are	meant	to	be	advisory	for	the	planning	of	a	follow-on	meeting.	

	
• Fewer	talks	

o Recognized	that	part	of	the	point	of	this	meeting	was	to	lay	some	groundwork,	but	went	
overboard	on	talks.	Thus	-	need	a	better	process	for	selecting	talks	that	keeps	a	balance	
between	the	labs	and	vendors,	while	focusing	on	the	topic	at	hand	

• Do	some	panel	discussions.	
o Perhaps	JOWOG	34-ACS	style	(an	ASC/AWE	collaboration	meeting)	–	e.g.	3-4	short	related	

talks	followed	by	a	panel	of	the	speakers	answering	questions	and	debating	for	15	minutes	
• Post	talks	earlier	so	people	can	see	them	during	the	meeting	

o This	can	be	hard	to	do	because	people	are	updating	things	in	real	time		-but	if	we	had	a	
common	site	(a	la	Google	site)	that	authors	could	upload	directly	to	that	would	help.	LBL	
could	help	with	this.	

• Going	forward,	having	lessons	learned	from	hack-a-thons	should	be	brought	out	at	this	meeting	to	
broadly	share	

o Probably	will	need	hardware	on	the	floor	before	we	get	there.	
• Consider	lunches	every	day	to	keep	things	moving	along	–	we	lost	a	fair	bit	of	time	on	Tues	and	Wed	

when	people	had	to	go	offsite.	Don’t	do	dinner	on	the	last	day	–	some	people	want	to	leave	early.	
o Note	that	we	did	the	dinner	on	the	last	day	to	incentivize	people	to	NOT	leave	early,	and	it	

appears	to	have	worked	somewhat.	
• More	I/O	talks	–	e.g.	sharing	burst	buffer	experience.	

o This	will	come	more	naturally	once	hardware	is	on	the	floor	to	use	(Trinity/Cori)	
• Compiler-focused	session	–	could	it	be	multi-vendor?		

o We	have	the	compiler	working	group	with	Sierra/Summit.	But	this	doesn’t	include	
application	people	directly.	

• Tools	API	–	what	hooks	and	performance	APIs.	Vendor	participation?	Tool	community,	too.	
o This	is	probably	better	done	in	the	context	of	a	different	meeting,	with	a	deep-dive	

summary	at	this	higher	level	meeting	
• The	iPad	timer	worked	wonders	

o Keeping	the	speakers	to	their	time	slots	was	critical	for	this	meeting	to	stay	on	schedule	and	
not	run	into	the	late	evening	hours.	The	use	of	an	iPad	in	the	first	row	counting	down	the	
time	remaining	for	each	speaker	was	hugely	effective	in	keeping	everyone	on	time.	

	
If	attendees	reading	this	report	have	additional	input	that	was	not	captured	here,	please	let	us	know	
with	a	brief	email	to	coepp-meeting@llnl.gov.	Your	input	will	help	our	next	meeting	be	much	improved	
and	valuable.	

Conclusions	
Overall,	this	meeting	was	deemed	successful	in	raising	awareness	of	the	issues	vis-à-vis	performance	
portability,	allowing	a	broad	spectrum	of	speakers	to	weigh	in	on	a	huge	variety	of	potential	solutions	to	
the	challenge,	and	breakout	discussions	to	drill	down	on	the	most	important	matters.	But	it	in	no	way	
solved	the	problem.	Instead,	it	will	hopefully	inspire	continued	ongoing	discussions	on	this	topic	–	one	

Attendee	List		

	

43	

that	will	become	critically	important	as	the	next	generation	of	large-scale	procurements	is	landing	at	the	
DOE	sites.	
	
The	Centers	of	Excellence	are	a	hugely	valuable	confluence	of	applications,	facilities,	vendors,	and	
software	providers	aimed	at	working	together	on	the	challenge	of	using	these	machines	effectively.	
Application	teams	have	clearly	indicated	that	performance	portability	is	important	to	them,	and	this	is	
manifesting	itself	within	the	strategies	of	these	COEs	and	the	feedback	to	the	vendor	community.	While	
large	meetings	such	as	this	are	important	for	organizing	our	thoughts	and	sharing	experiences,	the	
biggest	takeaway	from	this	meeting	is	that	we	need	to	strive	to	establish	meaningful	and	lasting	cross-
COE	collaborations	in	the	interim	and	for	the	benefit	of	the	entire	community.	The	motivation	is	there	–	
what’s	needed	is	strong	leadership,	coordination,	continued	cooperation,	and	sense	of	a	“shared	fate”	
that	this	is	something	that	only	a	community	as	strong	as	the	DOE,	the	vendor	partners,	and	our	
universities	can	solve	together.	

Attendee	List	
	

Last Name First Name Organization Email Address

Benali Anouar ANL benali at anl.gov
Keipert Kristopher ANL KWK at IASTATE.EDU
Kumaran Kalyan ANL kumaran at anl.gov
Morozov Vitali ANL morozov at anl.gov

Parker Scott ANL sparker at anl.gov
Pope Adrian ANL apope at anl.gov

Romero Nichols ANL naromero at alcf.anl.gov

Thakur Rajeev ANL thakur at mcs.anl.gov
Vazquez
Mayagoitia Alvaro ANL vama at alcf.anl.gov
Berry Michael CRAY mrberry at lanl.gov

DeRose Luiz CRAY ldr at cray.com
Gould Jay CRAY JayGould at Cray.com
Levesque John CRAY levesque at cray.com
Poxon Heidi CRAY heidi at cray.com
Delalondre Fabien EPFL fabien.delalondre at epfl.ch

Appelhans David IBM dappelh at us.ibm.com

Bertolli Carlo IBM cbertol at us.ibm.com

Changhoan Kim IBM kimchang at us.ibm.com
Cordery Matthew IBM mcorder at us.ibm.com

Gonzalez Garcia Juan IBM jgonzal at us.ibm.com
Grinberg Leopold IBM leopoldgrinberg at us.ibm.com

Jacob Arpith IBM acjacob at us.ibm.com
Kim Changhoan IBM kimchang at us.ibm.com

Attendee	List		

	

44	

Curley Joseph INTEL joseph.c.curley at intel.com
Gabrielson Liza INTEL liza.gabrielson at intel.com
Pennycook Simon INTEL john.pennycook at intel.com
Reinders James INTEL james.r.reinders at intel.com
Bergen Benjamin LANL bergen at lanl.gov
Bird Robert LANL bird at lanl.gov

Ferenbaugh Charles LANL cferenba at lanl.gov
Garrett Charles LANL ckgarrett at lanl.gov
Gunter David LANL dog at lanl.gov
Kelley Timothy LANL tkelley at lanl.gov

Lee Stephen LANL srlee at lanl.gov
Loncaric Josip LANL josip at lanl.gov
Long Alex LANL along at lanl.gov
Nam Hai Ah LANL hnam at lanl.gov
Nystrom William LANL wdn at lanl.gov
Rockefeller Gabriel LANL gaber at lanl.gov
Swaminarayan Sriram LANL sriram at lanl.gov
Womeldorff Geoff LANL womeld at lanl.gov
Basu Protonu LBL pbasu at lbl.gov

Deslippe Jack LBL jrdeslippe at lbl.gov

Doerfler Douglas LBL dwdoerf at lbl.gov
Friesen Brian LBL bfriesen at lbl.gov
Hartman-Baker Rebecca LBL rjhartmanbaker at lbl.gov
Nguyen Tan LBL tannguyen at lbl.gov

Ovsyannikov Andrey LBL aovsyannikov at lbl.gov

Van Straalen Brian LBL bvstraalen at lbl.gov
Beckingsale David LLNL beckingsale1 at llnl.gov
Biagas Kathleen LLNL biagas2 at llnl.gov

Black Aaron LLNL black27 at llnl.gov

Bleile Ryan LLNL bleile1 at llnl.gov
Brugger Eric LLNL brugger1 at llnl.gov
Collette Michael LLNL collette1 at llnl.gov
Dawson Shawn LLNL dawson6 at llnl.gov
de Supinski Bronis LLNL bronis at llnl.gov
Draeger Erik LLNL draeger1 at llnl.gov
Epperly Thomas LLNL epperly2 at llnl.gov
Futral Winfield LLNL futral2 at llnl.gov

Glosli James LLNL glosli at llnl.gov

Haque Riyaz LLNL haque1 at llnl.gov

Attendee	List		

	

45	

Hornung Richard LLNL hornung1 at llnl.gov
Jones Holger LLNL holgerjones at llnl.gov

Karlin Ian LLNL karlin1 at llnl.gov
Keasler Jeff LLNL keasler1 at llnl.gov
Kunen Adam LLNL kunen1 at llnl.gov
Laguna Ignacio LLNL lagunaperalt1 at llnl.gov

Leon Edgar LLNL leon at llnl.gov
Loffeld John LLNL loffeld1 at llnl.gov

Miller Mark LLNL miller86 at llnl.gov
Mohror Kathryn LLNL kathryn at llnl.gov
Neely Rob LLNL neely4 at llnl.gov
Nelson Jarom LLNL nelson99 at llnl.gov
Pankajakshan Ramesh LLNL pankajakshan1 at llnl.gov

Peles Slaven LLNL peles2 at llnl.gov

Poliakoff David LLNL poliakoff1 at llnl.gov
Pozulp Michael LLNL pozulp1 at llnl.gov
Richards David LLNL richards12 at llnl.gov
Ryujin Brian LLNL ryujin1 at llnl.gov
Scogland Thomas LLNL scogland1 at llnl.gov
Shoga Kathleen LLNL shoga1 at llnl.gov

Sinha Punita LLNL sinha2 at llnl.gov

Still Charles LLNL still1 at llnl.gov
Tagani Bujar LLNL bujar at llnl.gov
Voronin Alexey LLNL voronin at llnl.gov

White Daniel LLNL white37 at llnl.gov

Yeom Jae-Seung LLNL yeom2 at llnl.gov
Kelly Suzanne NNSA Suzanne.Kelly at NNSA.Doe.Gov

Macaluso Antoinette NNSA, ASC antoinette.macaluso at leidos.com
Branch Greg NVIDIA gbranch at nvidia.com
Feldstein Bob NVIDIA bfeldstein at nvidia.com
Gibbs Tom NVIDIA tgibbs at nvidia.com

Larkin Jeff NVIDIA jlarkin at nvidia.com
Rennich Steven NVIDIA srennich at nvidia.com

Sakharnykh Nikolay NVIDIA nsakharnykh at nvidia.com

Zeller Cyril NVIDIA czeller at nvidia.com

Bernholdt David ORNL bernholdtde at ornl.gov

Hernandez Oscar ORNL oscar at ornl.gov
Lopez Matthew ORNL lopezmg at ornl.gov
Messer Bronson ORNL bronson at ornl.gov

Attendee	List		

	

46	

Straatsma Tjerk ORNL str at ornl.gov

Vetter Jeffrey ORNL vetter at computer.org

Agelastos Anthony SNL amagela at sandia.gov

Brunini Victor SNL vebruni at sandia.gov
Clausen Jonathan SNL jclause at sandia.gov

Cook Jeanine SNL jeacook at sandia.gov

Dinge Dennis SNL dcdinge at sandia.gov
Glass Micheal SNL mwglass at sandia.gov
Hammond Simon SNL sdhammo at sandia.gov
Harstad Eric SNL enharst at sandia.gov

Hoekstra Robert SNL rjhoeks at sandia.gov
Kenny Joseph SNL jpkenny at sandia.gov

Laros James SNL jhlaros at sandia.gov
Lin Paul SNL ptlin at sandia.gov
Moore Stan SNL stamoor at sandia.gov
Ruggirello Kevin SNL kruggir at sandia.gov
Simpson Emily SNL emily.simpson at nnsa.doe.gov
Stevenson Joel SNL josteve at sandia.gov
Trott Christian SNL crtrott at sandia.gov
Wilke Jeremiah SNL jjwilke at sandia.gov
Paisley Beau Allinea bpaisley at allinea.com
Perks Oliver AWE oliver.perks at awe.co.uk
Joo Balint TJNAF bjoo at jlab.org

Martineau Matthew Univ of Bristol m.martineau at bristol.ac.uk
	
	
	

